Межі з квадратним корінням приклади розв'язання. Чудові межі. Приклади рішень

Серед завдань на вирішення меж трапляються межі з корінням. В результаті підстановки значення $x$ у функцію виходять невизначеності трьох видів:

  1. $ \bigg [\frac(0)(0) \bigg ] $
  2. $ \bigg [\frac(\infty)(\infty) \bigg ] $
  3. $ \bigg [\infty-\infty \bigg ] $

Перед тим, як приступити до рішення, визначте тип свого завдання

Тип 1 $ \bigg [\frac(0)(0) \bigg ] $

Для того, щоб розкривати такі невизначеності необхідно примножити чисельник і знаменник дробу на сполучене до виразу, що містить корінь.

Приклад 1
Знайти межу з коренем $$ \lim \limits_(x \to 4) \frac(x-4)(4-\sqrt(x+12)) $$
Рішення

Підставляємо $ x \to 4 $ у підрозподільну функцію:

$$ \lim \limits_(x \to 4) \frac(x-4)(4-\sqrt(x+12)) = \frac(0)(0) = $$

Отримуємо невизначеність $[\frac(0)(0)]$. Домножимо чисельник і знаменник на вираз пов'язаний до нього, оскільки він містить корінь: $ 4+\sqrt(x+12) $

$$ = \lim \limits_(x \to 4) \frac((x-4)(4+\sqrt(x+12)))((4-\sqrt(x+12))(4+\sqrt (x+12))) = $$

Використовуючи формулу різниці квадратів $ (a-b)(a+b) = a^2-b^2 $ наведемо межу до наступного виду:

$$ = \lim \limits_(x \to 4) \frac((x-4)(4+\sqrt(x+12)))(16-(x+12)) = $$

Розкриваємо дужки у знаменнику та спрощуємо його:

$$ = \lim \limits_(x \to 4) \frac((x-4)(4+\sqrt(x+12)))(4-x) = $$

Скорочуємо функцію в межах на $ x-4 $, маємо:

$$ = -\lim \limits_(x \to 4) (4+\sqrt(x+12)) = -(4+\sqrt(4+12)) = -8 $$

Якщо не вдається вирішити своє завдання, то надсилайте його до нас. Ми надамо детальне рішення. Ви зможете ознайомитися з ходом обчислення та отримати інформацію. Це допоможе вчасно отримати залік у викладача!

Відповідь
$$ \lim \limits_(x \to 4) \frac(x-4)(4-\sqrt(x+12)) = -8 $$

Тип 2 $ \bigg [\frac(\infty)(\infty) \bigg ] $

Межі з коренем такого типу, коли $ x \to \infty $ потрібно обчислювати по-іншому на відміну від попереднього випадку. Необхідно визначити старші ступені виразів чисельника та знаменника. Потім винести найстаршу з двох ступенів за дужки і скоротити.

Тип 3 $ \bigg [\infty-\infty \bigg ] $

Цей вид меж часто трапляється у додаткових завданнях на іспиті. Адже часто студенти неправильно обчислюють межі такого типу. Як вирішувати межі з корінням цього виду? Все просто. Необхідно помножити і розділити функцію, що стоїть у межі, на вираз пов'язане до неї.

Приклад 3
Обчислити межу кореня $$ \lim \limits_(x \to \infty) \sqrt(x^2-3x)-x $$
Рішення

При $ x \to \infty $ у межі бачимо:

$$ \lim \limits_(x \to \infty) \sqrt(x^2-3x)-x = [\infty - \infty] = $$

Після домноження та поділу на сполучене маємо межу:

$$ \lim \limits_(x \to \infty) \frac((\sqrt(x^2-3x)-x)(\sqrt(x^2-3x)+x))(\sqrt(x^2 -3x)+x) = $$

Спростимо чисельник, використовуючи формулу різниці квадратів: $(a-b)(a+b)=a^2-b^2 $

$$ = \lim \limits_(x \to \infty) \frac((x^2-3x)-x^2)(\sqrt(x^2-3x)+x) = $$

Після розкриття дужок та спрощення отримуємо:

$$ \lim \limits_(x \to \infty) \frac(-3x)(\sqrt(x^2-3x)+x) = $$

$$ = \lim \limits_(x \to \infty) \frac(-3x)(x(\sqrt(1-\frac(3)(x))+1)) = \lim \limits_(x \to \infty) \frac(-3)(\sqrt(1-\frac(3)(x))+1) = $$

Знову підставляємо $ x \to \infty $ у межу і обчислюємо його:

$$ = \frac(-3)(\sqrt(1-0)+1) = -\frac(3)(2) $$

Відповідь
$$ \lim \limits_(x \to \infty) \sqrt(x^2-3x)-x = -\frac(3)(2) $$

З вищевказаної статті Ви зможете дізнатися, що ж таке межа, і з чим її їдять – це дуже важливо. Чому? Можна не розуміти, що таке визначники та успішно їх вирішувати, можна зовсім не розуміти, що таке похідна та знаходити їх на «п'ятірку». Але якщо Ви не розумієте, що таке межа, то з вирішенням практичних завдань доведеться туго. Також не зайвим буде ознайомитись із зразками оформлення рішень та моїми рекомендаціями щодо оформлення. Вся інформація викладена у простій та доступній формі.

А для цілей цього уроку нам знадобляться такі методичні матеріали: Чудові межіі Тригонометричні формули. Їх можна знайти на сторінці. Найкраще методички роздрукувати - це значно зручніше, до того ж до них часто доведеться звертатися в офлайні.

Чим чудові межі? Чудовість цих меж полягає в тому, що вони доведені найбільшими розумами знаменитих математиків, і вдячним нащадкам не доводиться страждати страшними межами з нагромадженням тригонометричних функцій, логарифмів, ступенів. Тобто при знаходженні меж ми користуватимемося готовими результатами, які доведені теоретично.

Чудових меж існує кілька, але на практиці у студентів-заочників у 95% випадків фігурують дві чудові межі: Перша чудова межа, Друга чудова межа. Слід зазначити, що це назви, що історично склалися, і, коли, наприклад, говорять про «першу чудову межу», то мають на увазі під цим цілком певну річ, а не якусь випадкову, взяту зі стелі межу.

Перша чудова межа

Розглянемо наступну межу: (замість рідної літери «хе» я використовуватиму грецьку літеру «альфа», це зручніше з погляду подачі матеріалу).

Згідно з нашим правилом знаходження меж (див. статтю Межі. Приклади рішень) Пробуємо підставити нуль у функцію: в чисельнику у нас виходить нуль (синус нуля дорівнює нулю), у знаменнику, очевидно, теж нуль. Таким чином, ми стикаємося з невизначеністю виду, яку, на щастя, не треба розкривати. У курсі математичного аналізу доводиться, що:

Цей математичний факт зветься Першої чудової межі. Аналітичний доказ межі наводити не буду, а ось його геометричний зміст розглянемо на уроці про нескінченно малих функціях.

Нерідко в практичних завданнях функції можуть бути по-іншому, це нічого не змінює:

– та сама перша чудова межа.

Але самостійно переставляти чисельник та знаменник не можна! Якщо дана межа у вигляді , то і вирішувати його потрібно в такому вигляді, нічого не переставляючи.

Насправді як параметра може бути як змінна , а й елементарна функція, складна функція. Важливо лише, щоб вона прагнула нуля.

Приклади:
, , ,

Тут , , , , і все гуд - перша чудова межа застосуємо.

А ось наступний запис – єресь:

Чому? Тому що багаточлен не прагне нуля, він прагне п'ятірки.

До речі, питання на засипку, а чому дорівнює межа ? Відповідь можна знайти наприкінці уроку.

На практиці не все так гладко, майже ніколи студенту не запропонують вирішити халявну межу та отримати легкий залік. Хммм… Пишу ці рядки, і спала на думку дуже важлива думка – все-таки «халявні» математичні визначення та формули начебто краще пам'ятати напам'ять, це може надати неоціненну допомогу на заліку, коли питання вирішуватиметься між «двійкою» та «трійкою», і викладач вирішить поставити студенту якесь просте питання або запропонувати вирішити найпростіший приклад («а може він(а) все-таки знає чого?!»).

Переходимо до розгляду практичних прикладів:

Приклад 1

Знайти межу

Якщо ми помічаємо в межі синус, то це нас відразу має наштовхувати на думку про можливість застосування першої чудової межі.

Спочатку пробуємо підставити 0 у вираз під знак межі (робимо це подумки або на чернетці):

Отже, у нас є невизначеність виду, її обов'язково вказуємов оформленні рішення. Вираз під знаком межі у нас схоже на першу чудову межу, але це не зовсім він, під синусом знаходиться , а в знаменнику.

У подібних випадках перша чудова межа нам потрібно організувати самостійно, використовуючи штучний прийом. Хід міркувань може бути таким: "під синусом у нас, значить, у знаменнику нам теж потрібно отримати".
А робиться це дуже просто:

Тобто знаменник штучно множиться в даному випадку на 7 і ділиться на ту ж сімку. Тепер запис у нас набув знайомих обрисів.
Коли завдання оформляється від руки, то перша чудова межа бажано помітити простим олівцем:


Що сталося? По суті, обведений вираз у нас перетворився на одиницю і зник у творі:

Тепер тільки залишилося позбутися триповерховості дробу:

Хто забув спрощення багатоповерхових дробів, будь ласка, освіжіть матеріал у довіднику Гарячі формули шкільного курсу математики .

Готово. Остаточна відповідь:

Якщо не хочеться використовувати позначки олівцем, то рішення можна оформити так:



Використовуємо першу чудову межу

Приклад 2

Знайти межу

Знову ми бачимо межі дріб і синус. Пробуємо підставити в чисельник і знаменник нуль:

Справді, у нас невизначеність і, отже, треба спробувати організувати першу чудову межу. На уроці Межі. Приклади рішеньми розглядали правило, що коли у нас є невизначеність, то потрібно розкласти чисельник та знаменник на множники. Тут – те саме, ступеня ми представимо як твори (множників):

Аналогічно попередньому прикладу, обводимо олівцем чудові межі (тут їх дві), і вказуємо, що вони прагнуть одиниці:

Власне, відповідь готова:

У наступних прикладах, я не займатимуся мистецтвами в Пейнті, думаю, як правильно оформляти рішення у зошиті – Вам вже зрозуміло.

Приклад 3

Знайти межу

Підставляємо нуль у вираз під знаком межі:

Отримано невизначеність, яку потрібно розкривати. Якщо в межі є тангенс, то майже завжди його перетворюють на синус і косинус за відомою тригонометричною формулою (до речі, з котангенсом роблять приблизно те саме, див. методичний матеріал Гарячі тригонометричні формулина сторінці Математичні формули, таблиці та довідкові матеріали).

В даному випадку:

Косинус нуля дорівнює одиниці, і його легко позбутися (не забуваємо помітити, що він прагне одиниці):

Отже, якщо межі косинус є МНОЖИТЕЛЕМ, його, грубо кажучи, треба перетворити на одиницю, що зникає у творі.

Тут все вийшло простіше, без жодних помножень і поділів. Перша чудова межа теж перетворюється на одиницю і зникає у творі:

У результаті отримано нескінченність, буває таке.

Приклад 4

Знайти межу

Пробуємо підставити нуль у чисельник та знаменник:

Отримана невизначеність (косинус нуля, як ми пам'ятаємо, дорівнює одиниці)

Використовуємо тригонометричну формулу. Візьміть на замітку! Межі із застосуванням цієї формули чомусь зустрічаються дуже часто.

Постійні множники винесемо за значок межі:

Організуємо першу чудову межу:


Тут у нас тільки одна чудова межа, яка перетворюється на одиницю і зникає у творі:

Позбавимося триповерховості:

Межа фактично вирішена, вказуємо, що синус, що залишився, прагне до нуля:

Приклад 5

Знайти межу

Цей приклад складніший, спробуйте розібратися самостійно:

Деякі межі можна звести до 1-ї чудової межі шляхом заміни змінної, про це можна прочитати трохи пізніше в статті Методи розв'язання меж.

Друга чудова межа

Теоретично математичного аналізу доведено, що:

Цей факт має назву другої чудової межі.

Довідка: - Це ірраціональне число.

Як параметр може бути як змінна , а й складна функція. Важливо лише, щоб вона прагнула нескінченності.

Приклад 6

Знайти межу

Коли вираз під знаком межі перебуває у ступені – це перша ознака того, що потрібно спробувати застосувати другу чудову межу.

Але спочатку, як завжди, пробуємо підставити нескінченно велике число у вираз, за ​​яким принципом це робиться, розібрано на уроці. Межі. Приклади рішень.

Неважко помітити, що за основа ступеня , а показник – , тобто є, невизначеність виду:

Ця невизначеність якраз і розкривається за допомогою другої чудової межі. Але, як часто буває, друга чудова межа не лежить на блюдечку з блакитною облямівкою, і його потрібно штучно організувати. Розмірковувати можна так: у цьому прикладі параметр , отже, у показнику нам теж треба організувати . Для цього зводимо основу в ступінь , і щоб вираз не змінилося - зводимо в ступінь :

Коли завдання оформляється від руки, позначаємо олівцем:


Практично все готово, страшний ступінь перетворився на симпатичну букву:

При цьому сам значок межі переміщуємо до показника:

Приклад 7

Знайти межу

Увага! Межа подібного типу зустрічається дуже часто, будь ласка, дуже уважно вивчіть цей приклад.

Пробуємо підставити нескінченно велике число у вираз, що стоїть під знаком межі:

В результаті отримано невизначеність. Але друга чудова межа застосовується до невизначеності виду. Що робити? Потрібно перетворити основу ступеня. Розмірковуємо так: у знаменнику у нас, значить, у чисельнику теж треба організувати.

Теорія меж – це з розділів математичного аналізу. Питання вирішення меж є досить широким, оскільки існують десятки прийомів рішень меж різних видів. Існують десятки нюансів і хитрощів, що дозволяють вирішити ту чи іншу межу. Тим не менш, ми все-таки спробуємо розібратися в основних типах меж, які найчастіше зустрічаються практично.

Почнемо з поняття межі. Але спершу коротка історична довідка. Жив-був у 19 столітті француз Огюстен Луї Коші, який заклав основи математичного аналізу та дав суворі визначення, визначення межі, зокрема. Треба сказати, цей самий Коші снився, сниться і буде снитися в кошмарних снах всім студентам фізико-математичних факультетів, оскільки довів величезну кількість теорем математичного аналізу, причому одна теорема огидніша за іншу. У цьому ми не розглядатимемо суворе визначення межі, а спробуємо зробити дві речі:

1. Зрозуміти, що таке межа.
2. Навчитися вирішувати основні типи меж.

Перепрошую за деяку ненауковість пояснень, важливо щоб матеріал був зрозумілий навіть чайнику, що, власне, і є завданням проекту.

Отже, що таке межа?

А одразу приклад, чого бабусю кудлатити….

Будь-яка межа складається з трьох частин:

1) Всім відомого значка межі.
2) Записи під значком межі, у разі . Запис читається «ікс прагне одиниці». Найчастіше саме , хоча замість «ікса» на практиці зустрічаються й інші змінні. У практичних завданнях дома одиниці може бути абсолютно будь-яке число, і навіть нескінченність ().
3) Функції під знаком межі, у разі .

Сам запис читається так: «межа функції при ікс, що прагне до одиниці».

Розберемо наступне важливе питання – а що означає вираз «ікс прагнедо одиниці»? І що взагалі таке «прагне»?
Поняття межі - це поняття, якщо так можна сказати, динамічний. Побудуємо послідовність: спочатку , потім , , …, , ….
Тобто вираз «ікс прагнедо одиниці» слід розуміти так – «ікс» послідовно набуває значень, які нескінченно близько наближаються до одиниці та практично з нею збігаються.

Як вирішити вищезазначений приклад? Виходячи з вищесказаного, потрібно просто підставити одиницю у функцію, що стоїть під знаком межі:

Отже, перше правило: Коли дана будь-яка межа, спочатку просто намагаємося підставити число у функцію.

Ми розглянули найпростішу межу, але й такі зустрічаються на практиці, причому, не так вже й рідко!

Приклад із нескінченністю:

Розбираємось, що таке? Це той випадок, коли необмежено зростає, тобто: спочатку, потім, потім, потім і так далі до безкінечності.

А що в цей час відбувається з функцією?
, , , …

Отже: якщо , то функція прагне мінус нескінченності:

Грубо кажучи, згідно з нашим першим правилом, ми замість «ікса» підставляємо в функцію нескінченність і отримуємо відповідь.

Ще один приклад із нескінченністю:

Знову починаємо збільшувати до нескінченності, і дивимося на поведінку функції:

Висновок: при функція необмежено зростає:

І ще серія прикладів:

Будь ласка, спробуйте самостійно проаналізувати нижченаведене і запам'ятайте найпростіші види меж:

, , , , , , , , ,
Якщо де-небудь є сумніви, можете взяти в руки калькулятор і трохи потренуватися.
У разі, якщо , спробуйте побудувати послідовність , , . Якщо то , , .

Примітка: строго кажучи, такий підхід із побудовою послідовностей із кількох чисел некоректний, але для розуміння найпростіших прикладів цілком підійде.

Також зверніть увагу на таку річ. Навіть якщо дана межа з великим числом вгорі, та хоч з мільйоном: , то все одно , оскільки рано чи пізно «ікс» прийме такі гігантські значення, що мільйон в порівнянні з ними буде справжнісіньким мікробом.

Що потрібно запам'ятати та зрозуміти з вищесказаного?

1) Коли дано будь-яку межу, спочатку просто намагаємося підставити число у функцію.

2) Ви повинні розуміти і відразу вирішувати найпростіші межі, такі як , , і т.д.

Зараз ми розглянемо групу меж, коли , а функція є дріб, в чисельнику і знаменнику якого знаходяться багаточлени

Приклад:

Обчислити межу

Згідно з нашим правилом, спробуємо підставити нескінченність у функцію. Що в нас виходить вгорі? Нескінченність. А що виходить унизу? Теж нескінченність. Таким чином, у нас є так звана невизначеність виду. Можна було б подумати, що , і відповідь готова, але в загальному випадку це зовсім не так, і потрібно застосувати певний прийом рішення, який ми зараз і розглянемо.

Як вирішувати межі цього типу?

Спочатку ми дивимося на чисельник і знаходимо у старшому ступені:

Старший ступінь у чисельнику дорівнює двом.

Тепер дивимося на знаменник і теж знаходимо у старшому ступені:

Старший ступінь знаменника дорівнює двом.

Потім ми вибираємо найстарший ступінь чисельника і знаменника: у цьому прикладі вони збігаються і дорівнюють двійці.

Отже, метод вирішення наступний: для того, щоб розкрити невизначеність необхідно розділити чисельник і знаменник на старшому ступені.



Ось воно як відповідь, а зовсім не нескінченність.

Що важливо в оформленні рішення?

По-перше, вказуємо невизначеність, якщо вона є.

По-друге, бажано перервати рішення для проміжних пояснень. Я зазвичай використовую знак , він не несе ніякого математичного сенсу, а означає, що рішення перервано для проміжного пояснення.

По-третє, вкрай бажано помічати, що й куди прагне. Коли робота оформляється від руки, зручніше це зробити так:

Для позначок краще використовувати простий олівець.

Звичайно, можна нічого цього не робити, але тоді, мабуть, викладач відзначить недоліки у вирішенні або почне ставити додаткові питання по завданню. А воно Вам потрібне?

Приклад 2

Знайти межу
Знову в чисельнику та знаменнику знаходимо у старшому ступені:

Максимальний ступінь у чисельнику: 3
Максимальний ступінь у знаменнику: 4
Вибираємо найбільшезначення, у разі четвірку.
Відповідно до нашого алгоритму, для розкриття невизначеності ділимо чисельник та знаменник на .
Повне оформлення завдання може виглядати так:

Розділимо чисельник та знаменник на

Приклад 3

Знайти межу
Максимальний ступінь «ікса» у чисельнику: 2
Максимальний ступінь «ікса» у знаменнику: 1 (можна записати як)
Для розкриття невизначеності необхідно розділити чисельник та знаменник на . Чистовий варіант рішення може виглядати так:

Розділимо чисельник та знаменник на

Під записом мається на увазі не розподіл на нуль (ділити на нуль не можна), а розподіл на нескінченно мале число.

Таким чином, при розкритті невизначеності виду у нас може вийти кінцеве числонуль або нескінченність.


Межі з невизначеністю виду та метод їх вирішення

Наступна група меж чимось схожа на щойно розглянуті межі: у чисельнику та знаменнику знаходяться багаточлени, але «ікс» прагне вже не до нескінченності, а до кінцевого числа.

Приклад 4

Вирішити межу
Спочатку спробуємо підставити -1 в дріб:

В даному випадку отримана так звана невизначеність.

Загальне правило: якщо в чисельнику і знаменнику знаходяться багаточлени, і є невизначеності виду, то для її розкриття потрібно розкласти чисельник та знаменник на множники.

Для цього найчастіше потрібно вирішити квадратне рівняння та (або) використовувати формули скороченого множення. Якщо ці речі забулися, тоді відвідайте сторінку Математичні формули та таблиціта ознайомтеся з методичним матеріалом Гарячі формули шкільного курсу математики. До речі, його найкраще роздрукувати, потрібно дуже часто, та й інформація з паперу засвоюється краще.

Отже, вирішуємо нашу межу

Розкладемо чисельник і знаменник на множники

Для того, щоб розкласти чисельник на множники, потрібно розв'язати квадратне рівняння:

Спочатку знаходимо дискримінант:

І квадратний корінь із нього: .

Якщо дискримінант великий, наприклад 361, використовуємо калькулятор, функція вилучення квадратного кореня є на найпростішому калькуляторі.

! Якщо корінь не витягується націло (виходить дробове число з комою), цілком імовірно, що дискримінант обчислений неправильно чи завдання друку.

Далі знаходимо коріння:

Таким чином:

Всі. Чисельник на множники розкладено.

Знаменник. Знаменник вже є найпростішим множником, і спростити його неможливо.

Очевидно, що можна скоротити на :

Тепер і підставляємо -1 у вираз, який залишився під знаком межі:

Звичайно, в контрольній роботі, на заліку, іспиті так детально рішення ніколи не розписують. У чистовому варіанті оформлення має виглядати приблизно так:

Розкладемо чисельник на множники.





Приклад 5

Обчислити межу

Спочатку «чистовий» варіант рішення

Розкладемо чисельник і знаменник на множники.

Чисельник:
Знаменник:



,

Що важливого у цьому прикладі?
По-перше, Ви повинні добре розуміти, як розкритий чисельник, спочатку ми винесли за дужку 2, а потім використали формулу різниці квадратів. Вже цю формулу треба знати і бачити.

Для тих, хто хоче навчитися знаходити межі в цій статті, ми розповімо про це. Не заглиблюватимемося в теорію, зазвичай її дають на лекціях викладачі. Так що "нудна теорія" має бути у Вас законспектована у зошитах. Якщо цього немає, то можна почитати підручники взяті в бібліотеці навчального закладу або на інших інтернет-ресурсах.

Отже, поняття межі досить важливо у вивченні курсу вищої математики, особливо коли ви зіткнетеся з інтегральним обчисленням та зрозумієте зв'язок між межею та інтегралом. У цьому матеріалі будуть розглянуті прості приклади, а також способи їх вирішення.

Приклади рішень

Приклад 1
Обчислити а) $ \lim_(x \to 0) \frac(1)(x) $; б)$ \lim_(x \to \infty) \frac(1)(x) $
Рішення

а) $$ \lim \limits_(x \to 0) \frac(1)(x) = \infty $$

б)$$ \lim_(x \to \infty) \frac(1)(x) = 0 $$

Нам часто надсилають ці межі із проханням допомогти вирішити. Ми вирішили їх виділити окремим прикладом і пояснити, що ці межі необхідно просто запам'ятати, як правило.

Якщо не вдається вирішити своє завдання, то надсилайте його до нас. Ми надамо детальне рішення. Ви зможете ознайомитися з ходом обчислення та отримати інформацію. Це допоможе вчасно отримати залік у викладача!

Відповідь
$$ \text(a)) \lim \limits_(x \to 0) \frac(1)(x) = \infty \text( б))\lim \limits_(x \to \infty) \frac(1 )(x) = 0 $$

Що робити з невизначеністю виду: $ \bigg [\frac(0)(0) \bigg ] $

Приклад 3
Вирішити $ \lim \limits_(x \to -1) \frac(x^2-1)(x+1) $
Рішення

Як завжди починаємо з підстановки значення $ x $ у вираз, що стоїть під знаком межі.

$$ \lim \limits_(x \to -1) \frac(x^2-1)(x+1) = \frac((-1)^2-1)(-1+1)=\frac( 0)(0) $$

Що тепер далі? Що ж має вийти у результаті? Оскільки це невизначеність, це ще відповідь і продовжуємо обчислення. Так як у чисельники у нас багаточлен, то розкладемо його на множники, допомогою знайомої всім формули ще зі шкільної лави $$ a^2-b^2=(a-b)(a+b) $$. Згадали? Чудово! Тепер вперед і з піснею застосовувати її :)

Отримуємо, що чисельник $ x^2-1=(x-1)(x+1) $

Продовжуємо вирішувати враховуючи вищенаведене перетворення:

$$ \lim \limits_(x \to -1)\frac(x^2-1)(x+1) = \lim \limits_(x \to -1)\frac((x-1)(x+ 1))(x+1) = $$

$$ = \lim \limits_(x \to -1)(x-1)=-1-1=-2 $$

Відповідь
$$ \lim \limits_(x \to -1) \frac(x^2-1)(x+1) = -2 $$

Спрямуємо межу останніх двох прикладах до нескінченності і розглянемо невизначеність: $ \bigg [\frac(\infty)(\infty) \bigg ] $

Приклад 5
Обчислити $ \lim \limits_(x \to \infty) \frac(x^2-1)(x+1) $
Рішення

$ \lim \limits_(x \to \infty) \frac(x^2-1)(x+1) = \frac(\infty)(\infty) $

Що ж робити? Як бути? Не варто панікувати, бо неможливе – можливо. Потрібно винести за дужки і в чисельнику і в знаменнику ікс, а потім скоротити його. Після цього межу спробувати обчислити. Пробуємо...

$$ \lim \limits_(x \to \infty) \frac(x^2-1)(x+1) =\lim \limits_(x \to \infty) \frac(x^2(1-\frac) (1)(x^2)))(x(1+\frac(1)(x))) = $$

$$ = \lim \limits_(x \to \infty) \frac(x(1-\frac(1)(x^2)))((1+\frac(1)(x))) = $$

Використовуючи визначення з прикладу 2 і підставляючи місце х нескінченність отримуємо:

$$ = \frac(\infty(1-\frac(1)(\infty)))((1+\frac(1)(\infty))) = \frac(\infty \cdot 1)(1+ 0) = \frac(\infty)(1) = \infty $$

Відповідь
$$ \lim \limits_(x \to \infty) \frac(x^2-1)(x+1) = \infty $$

Алгоритм обчислення лімітів

Отже, давайте коротко підіб'ємо підсумок розібраним прикладам і складемо алгоритм розв'язання меж:

  1. Підставити точку х вираз, наступне після знака межі. Якщо виходить певна кількість, або нескінченність, то межа вирішена повністю. В іншому випадку маємо невизначеність: "нуль ділити на нуль" або "нескінченність ділити на нескінченність" і переходимо до наступних пунктів інструкції.
  2. Щоб усунути невизначеність "нуль ділити на нуль", потрібно розкласти чисельник і знаменник на множники. Скоротити такі. Підставити точку х у вираз, що стоїть під знаком межі.
  3. Якщо невизначеність "нескінченність ділити на нескінченність", тоді виносимо і в чисельнику, і в знаменнику x найбільшою мірою. Скорочуємо ікси. Підставляємо значення ікса з-під межі в вираз, що залишився.

У цій статті Ви ознайомилися з основами вирішення меж, які часто використовуються в курсі Математичного аналізу. Звичайно ж це не всі типи завдань, що пропонуються екзаменаторами, а найпростіші межі. У наступних статтях поговоримо про інші типи завдань, але спершу необхідно засвоїти цей урок, щоб рухатися далі. Обговоримо, що робити, якщо є коріння, міри, вивчимо нескінченно малі еквівалентні функції, чудові межі, правило Лопіталя.

Якщо Вам не вдається самостійно вирішити межі, то не панікуйте. Ми завжди раді допомогти!

У цій темі ми розглянемо всі три перелічені вище групи меж з ірраціональностями. Почнемо з меж, що містять невизначеність виду $ frac (0) (0) $.

Розкриття невизначеності $\frac(0)(0)$.

Схема вирішення стандартних прикладів такого типу зазвичай складається із двох кроків:

  • Позбавляємося ірраціональності, що викликала невизначеність, домножуючи на так зване "сполучене" вираз;
  • При необхідності розкладаємо вираз у чисельнику або знаменнику (або там і там) на множники;
  • Скорочуємо множники, що призводять до невизначеності, і обчислюємо значення межі, що шукається.

Термін "сполучений вираз", використаний вище, буде детально пояснений у прикладах. Поки що зупинятись на ньому докладно немає резону. Взагалі можна піти іншим шляхом, без використання сполученого виразу. Іноді ірраціональності може позбавити вдало підібрана заміна. Такі приклади рідкісні у стандартних контрольних роботах, тому використання заміни розглянемо лише приклад №6 (див. другу частину цієї теми).

Нам знадобиться кілька формул, які я запишу нижче:

\begin(equation) a^2-b^2=(a-b)\cdot(a+b) \end(equation) \begin(equation) a^3-b^3=(a-b)\cdot(a^2 +ab+b^2) \end(equation) \begin(equation) a^3+b^3=(a+b)\cdot(a^2-ab+b^2) \end(equation) \begin (equation) a^4-b^4=(a-b)\cdot(a^3+a^2 b+ab^2+b^3)\end(equation)

Крім того, припускаємо, що читач знає формули для розв'язання квадратних рівнянь. Якщо $x_1$ і $x_2$ - коріння квадратного тричлену $ax^2+bx+c$, то розкласти його на множники можна за такою формулою:

\begin(equation) ax^2+bx+c=a\cdot(x-x_1)\cdot(x-x_2) \end(equation)

Формул (1)-(5) цілком вистачить на вирішення стандартних завдань, яких ми зараз і перейдемо.

Приклад №1

Знайти $\lim_(x\to 3)\frac(\sqrt(7-x)-2)(x-3)$.

Оскільки $\lim_(x\to 3)(\sqrt(7-x)-2)=\sqrt(7-3)-2=\sqrt(4)-2=0$ і $\lim_(x\ to 3) (x-3)=3-3=0$, то заданому межі ми маємо невизначеність виду $\frac(0)(0)$. Розкрити цю невизначеність нам заважає різницю $ sqrt (7-x)-2 $. Для того, щоб позбавлятися подібних ірраціональностей, застосовують множення на так зване "сполучене вираження". Як діє таке множення, ми зараз і розглянемо. Помножимо $\sqrt(7-x)-2$ на $sqrt(7-x)+2$:

$$(\sqrt(7-x)-2)(\sqrt(7-x)+2)$$

Щоб розкрити дужки застосуємо , підставивши праву частину згаданої формули $a=\sqrt(7-x)$, $b=2$:

$$(\sqrt(7-x)-2)(\sqrt(7-x)+2)=(\sqrt(7-x))^2-2^2=7-x-4=3-x .$$

Як бачите, якщо помножити чисельник на $sqrt(7-x)+2$, то корінь (тобто ірраціональність) у чисельнику зникне. Ось цей вираз $\sqrt(7-x)+2$ і буде пов'язанимдо виразу $ \ sqrt (7-x) - 2 $. Однак ми не вправі просто взяти і помножити чисельник на $\sqrt(7-x)+2$, бо це змінить дріб $\frac(\sqrt(7-x)-2)(x-3)$, що стоїть під межею . Помножувати потрібно одчасно і чисельник і знаменник:

$$ \lim_(x\to 3)\frac(\sqrt(7-x)-2)(x-3)= \left|\frac(0)(0)\right|=\lim_(x\to 3)\frac((\sqrt(7-x)-2)\cdot(\sqrt(7-x)+2))((x-3)\cdot(\sqrt(7-x)+2)) $$

Тепер пригадаємо, що $(\sqrt(7-x)-2)(\sqrt(7-x)+2)=3-x$ і розкриємо дужки. А після розкриття дужок і невеликого перетворення $3-x=-(x-3)$ скоротимо дріб на $x-3$:

$$ \lim_(x\to 3)\frac((\sqrt(7-x)-2)\cdot(\sqrt(7-x)+2))((x-3)\cdot(\sqrt( 7-x)+2))= \lim_(x\to 3)\frac(3-x)((x-3)\cdot(\sqrt(7-x)+2))=\\ =\lim_ (x\to 3)\frac(-(x-3))((x-3)\cdot(\sqrt(7-x)+2))= \lim_(x\to 3)\frac(-1 )(\sqrt(7-x)+2) $$

Невизначеність $\frac(0)(0)$ зникла. Зараз можна легко отримати відповідь цього прикладу:

$$ \lim_(x\to 3)\frac(-1)(\sqrt(7-x)+2)=\frac(-1)(\sqrt(7-3)+2)=-\frac( 1)(\sqrt(4)+2)=-\frac(1)(4).$$

Зауважу, що сполучене вираження може змінювати свою структуру - залежно від того, яку саме ірраціональність вона має прибрати. У прикладах №4 і №5 (див. другу частину цієї теми) буде використано інший вид сполученого виразу.

Відповідь: $\lim_(x\to 3)\frac(\sqrt(7-x)-2)(x-3)=-\frac(1)(4)$.

Приклад №2

Знайти $\lim_(x\to 2)\frac(3x^2-5x-2)(\sqrt(x^2+5)-\sqrt(7x^2-19))$.

Оскільки $\lim_(x\to 2)(\sqrt(x^2+5)-\sqrt(7x^2-19))=\sqrt(2^2+5)-\sqrt(7\cdot 2 ^2-19)=3-3=0$ і $\lim_(x\to 2)(3x^2-5x-2)=3\cdot2^2-5\cdot 2-2=0$, то ми маємо справу з невизначеністю виду $ frac (0) (0) $. Позбавимося ірраціональності в знаменнику даного дробу. Для цього доможемо і чисельник і знаменник дробу $\frac(3x^2-5x-2)(\sqrt(x^2+5)-\sqrt(7x^2-19))$ на вираз $\sqrt(x^ 2+5)+\sqrt(7x^2-19)$, пов'язане до знаменника:

$$ \lim_(x\to 2)\frac(3x^2-5x-2)(\sqrt(x^2+5)-\sqrt(7x^2-19))=\left|\frac(0 )(0)\right|= \lim_(x\to 2)\frac((3x^2-5x-2)(\sqrt(x^2+5)+\sqrt(7x^2-19)))) ((\sqrt(x^2+5)-\sqrt(7x^2-19))(\sqrt(x^2+5)+\sqrt(7x^2-19))) $$

Знову, як і прикладі №1, потрібно використовуватиме розкриття дужок. Підставивши праву частину згаданої формули $a=\sqrt(x^2+5)$, $b=\sqrt(7x^2-19)$, отримаємо такий вираз для знаменника:

$$ \left(\sqrt(x^2+5)-\sqrt(7x^2-19)\right)\left(\sqrt(x^2+5)+\sqrt(7x^2-19)\ right)=\\ =\left(\sqrt(x^2+5)\right)^2-\left(\sqrt(7x^2-19)\right)^2=x^2+5-(7x ^2-19)=-6x^2+24=-6\cdot(x^2-4) $$

Повернемося до нашої межі:

$$ \lim_(x\to 2)\frac((3x^2-5x-2)(\sqrt(x^2+5)+\sqrt(7x^2-19)))((\sqrt(x ^2+5)-\sqrt(7x^2-19))(\sqrt(x^2+5)+\sqrt(7x^2-19)))= \lim_(x\to 2)\frac( (3x^2-5x-2)(\sqrt(x^2+5)+\sqrt(7x^2-19)))(-6\cdot(x^2-4))=\\ =-\ frac(1)(6)\cdot \lim_(x\to 2)\frac((3x^2-5x-2)(\sqrt(x^2+5)+\sqrt(7x^2-19)) )(x^2-4) $$

У прикладі №1 практично відразу після домноження на сполучене вираз відбулося скорочення дробу. Тут перед скороченням доведеться розкласти на множники вирази $3x^2-5x-2$ і $x^2-4$, а потім перейти до скорочення. Щоб розкласти на множники вираз $3x^2-5x-2$ потрібно використати . Для початку розв'яжемо квадратне рівняння $3x^2-5x-2=0$:

$$ 3x^2-5x-2=0\\begin(aligned) & D=(-5)^2-4\cdot3\cdot(-2)=25+24=49;\\ & x_1=\ frac(-(-5)-\sqrt(49))(2\cdot3)=\frac(5-7)(6)=-\frac(2)(6)=-\frac(1)(3) ; \\ & x_2=\frac(-(-5)+\sqrt(49))(2\cdot3)=\frac(5+7)(6)=\frac(12)(6)=2. \end(aligned) $$

Підставляючи $x_1=-\frac(1)(3)$, $x_2=2$ в , будемо мати:

$$ 3x^2-5x-2=3\cdot\left(x-\left(-\frac(1)(3)\right)\right)(x-2)=3\cdot\left(x+\ frac(1)(3)\right)(x-2)=\left(3\cdot x+3\cdot\frac(1)(3)\right)(x-2) =(3x+1)( x-2). $$

Тепер настала черга розкласти на множники вираз $x^2-4$. Скористаємося , підставивши до неї $a=x$, $b=2$:

$$ x^2-4=x^2-2^2=(x-2)(x+2) $$

Використовуємо отримані результати. Оскільки $x^2-4=(x-2)(x+2)$ і $3x^2-5x-2=(3x+1)(x-2)$, то:

$$ -\frac(1)(6)\cdot \lim_(x\to 2)\frac((3x^2-5x-2)(\sqrt(x^2+5)+\sqrt(7x^2) -19)))(x^2-4) =-\frac(1)(6)\cdot \lim_(x\to 2)\frac((3x+1)(x-2)(\sqrt(x) ^2+5)+\sqrt(7x^2-19)))((x-2)(x+2)) $$

Скорочуючи на дужку $x-2$ отримаємо:

$$ -\frac(1)(6)\cdot \lim_(x\to 2)\frac((3x+1)(x-2)(\sqrt(x^2+5)+\sqrt(7x^) 2-19)))((x-2)(x+2)) =-\frac(1)(6)\cdot \lim_(x\to 2)\frac((3x+1)(\sqrt( x^2+5)+sqrt(7x^2-19)))(x+2). $$

Всі! Невизначеність зникла. Ще один крок і ми приходимо до відповіді:

$$ -\frac(1)(6)\cdot \lim_(x\to 2)\frac((3x+1)(\sqrt(x^2+5)+\sqrt(7x^2-19)) )(x+2)=\ =-\frac(1)(6)\cdot\frac((3\cdot 2+1)(\sqrt(2^2+5)+\sqrt(7\cdot 2) ^2-19)))(2+2)= -frac(1)(6)cdotfrac(7(3+3))(4)=-frac(7)(4). $$

Відповідь: $\lim_(x\to 2)\frac(3x^2-5x-2)(\sqrt(x^2+5)-\sqrt(7x^2-19))=-\frac(7)( 4) $.

У наступному прикладі розглянемо випадок, коли ірраціональності будуть присутні як у чисельнику, так і в знаменнику дробу.

Приклад №3

Знайти $\lim_(x\to 5)\frac(\sqrt(x+4)-\sqrt(x^2-16))(\sqrt(x^2-3x+6)-\sqrt(5x-9) )) $.

Оскільки $\lim_(x\to 5)(\sqrt(x+4)-\sqrt(x^2-16))=\sqrt(9)-\sqrt(9)=0$ і $\lim_( x\to 5)(\sqrt(x^2-3x+6)-\sqrt(5x-9))=\sqrt(16)-\sqrt(16)=0$, то ми маємо невизначеність виду $\frac (0)(0)$. Оскільки в цьому випадку коріння є і в знаменнику, і в чисельнику, то щоб позбутися невизначеності доведеться примножувати відразу на дві дужки. По-перше, на вираз $ sqrt (x + 4) + sqrt (x ^ 2-16) $, пов'язане чисельнику. А по-друге на вираз $\sqrt(x^2-3x+6)-sqrt(5x-9)$, пов'язане знаменнику.

$$ \lim_(x\to 5)\frac(\sqrt(x+4)-\sqrt(x^2-16))(\sqrt(x^2-3x+6)-\sqrt(5x-9 ))=\left|\frac(0)(0)\right|=\\ =\lim_(x\to 5)\frac((\sqrt(x+4)-\sqrt(x^2-16)) )(\sqrt(x+4)+\sqrt(x^2-16))(\sqrt(x^2-3x+6)+\sqrt(5x-9)))((\sqrt(x^2) -3x+6)-\sqrt(5x-9))(\sqrt(x^2-3x+6)+\sqrt(5x-9))(\sqrt(x+4)+\sqrt(x^2) -16))) $$ $$ -x^2+x+20=0;\\ \begin(aligned) & D=1^2-4\cdot(-1)\cdot 20=81;\\ & x_1=\frac(-1-\sqrt(81))(-2)=\frac(-10)(-2)=5;\\ & x_2=\frac(-1+\sqrt(81))( -2)=\frac(8)(-2)=-4. \end(aligned) -x^2+x+20=-1cdot(x-5)(x-(-4))=-(x-5)(x+4). $$

Для вираження $x^2-8x+15$ отримаємо:

$$ x^2-8x+15=0; \\ \begin(aligned) & D=(-8)^2-4\cdot 1\cdot 15=4;\\ & x_1=\frac(-(- 8)-\sqrt(4))(2)=\frac(6)(2)=3;\\ & x_2=\frac(-(-8)+\sqrt(4))(2)=\frac (10) (2) = 5. \end(aligned)\x^2+8x+15=1cdot(x-3)(x-5)=(x-3)(x-5). $$

Підставляючи отримані розлучення $-x^2+x+20=-(x-5)(x+4)$ і $x^2+8x+15=(x-3)(x-5)$ у розглянуту межу, будемо мати:

$$ \lim_(x\to 5)\frac((-x^2+x+20)(\sqrt(x^2-3x+6)+\sqrt(5x-9)))((x^2 -8x+15)(\sqrt(x+4)+\sqrt(x^2-16)))= \lim_(x\to 5)\frac(-(x-5)(x+4)(\ sqrt(x^2-3x+6)+\sqrt(5x-9)))((x-3)(x-5)(\sqrt(x+4)+\sqrt(x^2-16)) )=\\ =\lim_(x\to 5)\frac(-(x+4)(\sqrt(x^2-3x+6)+\sqrt(5x-9)))((x-3) (\sqrt(x+4)+\sqrt(x^2-16)))= \frac(-(5+4)(\sqrt(5^2-3\cdot 5+6)+\sqrt(5) \cdot 5-9)))((5-3)(\sqrt(5+4)+\sqrt(5^2-16)))=-6. $$

Відповідь: $\lim_(x\to 5)\frac(\sqrt(x+4)-\sqrt(x^2-16))(\sqrt(x^2-3x+6)-\sqrt(5x-9 )) = -6 $.

У наступній (другій) частині розглянемо ще кілька прикладів, у яких сполучене вираз матиме інший вигляд, ніж у попередніх завданнях. Головне, пам'ятайте, що мета використання сполученого виразу - позбавитися ірраціональності, що викликає невизначеність.