Различные пути построения математической модели

При построении математической модели системы можно выделить несколько этапов.

1-й этап. Постановка задачи. Этапу предшествует возникновение ситуаций или проблем, осознание которых приводит к мысли их обобщения или решения для последующего достижения какого-либо эффекта. Исходя из этого, объект описывается, отмечаются вопросы, подлежащие решению, и ставится цель исследования. Здесь необходимо уяснить, что мы хотим получить в результате исследований. Предварительно нужно оценить, нельзя ли получить эти результаты другим, более дешевым или доступным путем.

2-й этап. Определение задачи. Исследователь старается определить, к какому виду относится объект, описывает параметры состояния объекта, переменные, характеристики, факторы внешней среды. Необходимо познать закономерности внутренней организации объекта, очертить границы объекта, построить его структуру. Эта работа называется идентификацией системы. Отсюда выбирается задача исследования, которая может решать вопросы: оптимизации, сравнения, оценки, прогноза, анализа чувствительности, выявления функциональных соотношений и т.п.

Концептуальная модель позволяет оценить положение системы во внешней среде, выявить необходимые ресурсы для ее функционирования, влияние факторов внешней среды и то, что мы ожидаем на выходе.

Необходимость проведения исследования возникает из реальных ситуаций, складывающихся в процессе работы системы, когда они в чем-либо начинают не удовлетворять каким-либо старым или новым требованиям. Если недостатки очевидны и известны методы их устранения, то нет необходимости в исследованиях.

Исходя из задачи исследования, можно определить назначение математической модели, которая должна быть построена для исследования. Такие модели могут решать задачи:

· выявления функциональных соотношений, заключающихся в определении количественных зависимостей между входными фактора ми модели и выходными характеристиками исследуемого объекта;



· анализа чувствительности, заключающегося в установлении факторов, которые в большей степени влияют на интересующие исследователя выходные характеристики системы;

· прогноза - оценки поведения системы при некотором предполагаемом сочетании внешних условий;

· оценки - определения, насколько хорошо исследуемый объект будет соответствовать некоторым критериям;

· сравнения, заключающегося в сопоставлении ограниченного числа альтернативных вариантов систем или же в сопоставлении нескольких предлагаемых принципов или методов действия;

· оптимизации, состоящей в точном определении такого сочетания переменных управления, при которых обеспечивается экстремальное значение целевой функции.

Выбор задачи определяет процесс создания и экспериментальной проверки модели.

Любое исследование должно начинаться с построения плана,включающего обследование системы и анализ ее функционирования. В плане должны быть предусмотрены:

· описание функций, реализуемых объектом;

· определение взаимодействий всех систем и элементов объекта;

· определение зависимости между входными и выходными переменными и влияние переменных управляющих воздействий на эти зависимости;

· определение экономических показателей функционирования системы.

Результаты обследования системы и окружающей среды представляются в виде описания процесса функционирования, которое используется для идентификации системы. Идентифицировать систему - значит выявить и изучить ее, а также:

Получить более полную характеристику системы и ее поведения;

Познать объективные закономерности ее внутренней организации;

Очертить ее границы;

Указать на вход, процесс и выход;

Определить ограничения на них;

Построить ее структурную и математическую модели;

Описать ее на каком-либо формальном абстрактном языке;

Определить цели, принуждающие связи, критерии действия системы.

После идентификации системы строится концептуальная модель,являющаяся «идеологической» основой будущей математической модели. Именно в ней отражается состав критериев оптимальности и ограничений, определяющих целевую направленность модели. Перевод на этапе формализации качественных зависимостей в количественные преобразует критерий оптимальности в целевую функцию, ограничения - в уравнения связи, концептуальную модель - в математическую.

На основе концептуальной модели можно построить факторную модель, которая устанавливает логическую связь между параметрами объекта, входными и выходными переменными, факторами внешней среды и параметрами управления, а также учитывать обратные связи в системе.

3-й этап. Составление математической модели. Вид математической модели в значительной степени зависит от цели исследования. Математическая модель может быть в виде математического выражения, представляющего собой алгебраическое уравнение, или неравенство, не имеющее разветвления вычислительного процесса при определении любых переменных состояния модели, целевой функции и уравнений связи.

Для построения такой модели формулируются следующие понятия:

· критерий оптимальности - показатель, выбираемый исследователем, имеющий, как правило, экологический смысл, который служит для формализации конкретной цели управления объектом исследования и выражаемый при помощи целевой функции;

· целевая функция - характеристика объекта, установленная из условия дальнейшего поиска критерия оптимальности, математически связывающая между собой те или иные факторы объекта исследования. Целевая функция и критерий оптимальности - разные понятия. Они могут быть описаны функциями одного и того же вида или же разными функциями;

· ограничения - пределы, сужающие область осуществимых, приемлемых или допустимых решений и фиксирующие основные внутренние и внешние свойства объекта. Ограничения определяют область исследования, протекания процессов, пределы изменения параметров и факторов объекта.

Следующим этапом построения системы является формирование математической модели, включающее в себя несколько видов работ: математическую формализацию, численное представление, анализ модели и выбор метода ее решения.

Математическая формализация осуществляется по концептуальной модели. При формализации рассматривают три основные ситуации:

1) известны уравнения, описывающие поведение объекта. В этом случае решением прямой задачи можно найти реакцию объекта на заданный входной сигнал;

2) обратная задача, когда по заданному математическому описанию и известной реакции необходимо найти входной сигнал, вызывающий этот отклик;

3)математическое описание объекта неизвестно, но имеются или могут быть заданы совокупности входных и соответствующих им выходных сигналов. В этом случае имеем дело с задачей идентификации объекта.

При моделировании производственно-экологических объектов в третьей ситуации при решении задачи идентификации используется подход, предложенный Н. Винером, и известный как метод «черного ящика». В качестве «черного ящика» рассматривается объект в целом, вследствие его сложности. Так как внутреннее устройство объекта неизвестно, мы можем изучить «черный ящик», найдя входы и выходы. Сопоставляя входы и выходы, можно написать соотношение

Y = АХ,

где X - вектор входных параметров; Y - вектор выходных параметров; А - оператор объекта, преобразующий Х в Y. Для описания объекта в виде математической зависимости в задачах идентификации используются методы регрессивного анализа. При этом возможно описание объекта множеством математических моделей, так как нельзя вынести обоснованного суждения о его внутреннем устройстве.

Основой выбора метода математического описания является знание физической природы функционирования описываемого объекта достаточно широкого круга эколого-математических методов, возможностей и особенностей ЭВМ, на которой планируется проведение моделирования. Для многих рассматриваемых явлений имеется достаточно много известных математических описаний и типовых математических моделей. При развитой системе математического обеспечения ЭВМ целый ряд процедур моделирования можно осуществит с помощью стандартных программ.

Оригинальные математические модели можно написать на основе проведенных исследований систем и апробированных в реалы ной обстановке. Для проведения новых исследований такие модели корректируются под новые условия.

Математические модели элементарных процессов, физической природа которых известна, записываются в виде тех формул и зависимостей, которые установлены для этих процессов. Как правило, статические задачи выражаются в виде алгебраических выражений, динамические - в виде дифференциальных или конечно-разностных уравнений.

Численное представление модели производится для подготовки ее к реализации на ЭВМ. Задание числовых значений трудностей не представляет. Осложнения встречаются при компактном представлении обширной статистической информации и результатов экспериментов.

Основными методами преобразования табличных значений к аналитическому виду являются: интерполяция, аппроксимация и экстраполяция.

Интерполяция - приближенное или точное нахождение какой-либо величины по известным отдельным значениям этой же или других величин, связанных с ней.

Аппроксимация - замена одних математических объектов другими, в том или ином смысле близкими к исходным. Аппроксимация позволяет исследовать числовые характеристики и качественные свойства объекта, сводя задачу к изучению более простых или более удобных объектов.

Экстраполяция - продолжение функции за пределы ее области определения, при котором продолженная функция принадлежит заданному классу. Экстраполяция функции обычно производится с помощью формул, в которых использована информация о поведении функций в некотором конечном наборе точек, называемых узлами экстраполяции, принадлежащими к области определения.

Следующим этапом построения является анализ полученной модели и выбор метода ее решения. Основой для вычисления значений выходных характеристик модели служит составленный на ее базе алгоритм решения задачи на ЭВМ. Разработка и программирование такого алгоритма, как правило, не встречают принципиальных трудностей.

Более сложной является организация вычислительного процесса для определения выходных характеристик, лежащих в допустимых областях, особенно для многофакторных моделей. Еще сложнее - поиск решений по оптимизационным моделям. Самая совершенная и адекватная описываемому объекту математическая модель без нахождения оптимального значения бесполезна, она не может быть использована.

Основную роль при разработке алгоритма поиска оптимальны решений играют характер факторов математической модели, чисуи критериев оптимальности, вид целевой функции и уравнений связи Вид целевой функции и ограничений определяет выбор одного и трех основных методов решения эколого-математических моделей:

· аналитического исследования;

· исследования при помощи численных методов;

· исследования алгоритмических моделей с помощью методов экспериментальной оптимизации на ЭВМ.

Аналитические методы отличаются тем, что помимо точного значения искомых переменных они могут давать оптимальное решение в виде готовой формулы, куда входят характеристики внешней среды и начальные условия, которые исследователь может изменять в широких пределах, не меняя самой формулы.

Численные методы дают возможность получить решение путем многократного вычисления по определенному алгоритму, реализующему тот или иной численный метод. В качестве исходных данных для вычисления используются числовые значения параметре объекта, внешней среды и начальных условий. Численные методы являются итеративными процедурами: для проведения следующего шага расчетов (при новом значении управляемых переменных) пользуются результаты предыдущих расчетов, что позволяет получать в процессе вычислений улучшенные результаты и тем самым находить оптимальное решение.

Свойства конкретной алгоритмической модели, на которой базируется алгоритм поиска оптимального решения, например ее линейность или выпуклость, могут быть определены только в процессе экспериментирования с ней, в связи с чем для решения моделей этого класса используются так называемые методы экспериментальной оптимизации на ЭВМ. При использовании этих метод производится пошаговое приближение к оптимальному решению на основе результатов расчета по алгоритму, моделирующему работу исследуемой системы. Методы базируются на принципах поиска оптимальных решений в численных методах, но в отличие от них все действия по разработке алгоритма и программы оптимизации выполняет разработчик модели.

Имитационное моделирование задач, содержащих случайные параметры, принято называть статистическим моделированием.

Заключительным шагом создания модели является составление ее описания, которое содержит сведения, необходимые для изучения модели, ее дальнейшего использования, а также все ограничения и допущения. Тщательный и полный учет факторов при построении модели и формулировке допущений позволяет оценить точность модели, избежать ошибок при интерпретации ее результатов.

· 4-й этап . Вычисления. При решении задачи необходимо тщательно разобраться с размерностью всех величин, входящих в математическую модель, и определить границы (пределы), в которых будет лежать искомая целевая функция, а также требуемую точность вычислений. Если возможно, то вычисления проводятся при неизменных условиях по несколько раз, чтобы убедиться, что целевая функция не изменяется.

· 5-й этап . Выдача результатов. Результаты исследования объекта могут выдаваться в устной или письменной форме. Они должны включать в себя краткое описание объекта исследования, цели исследования, математическую модель, допущения, принятые при выборе математической модели, основные результаты вычислений, обобщения и выводы.

2.2.1 С точки зрения математический подхода “Задача – это модель и алгоритм ее применения в рамках некоторой математической теории” Для применения математических методов исследования требуется построить математическую модель задачи. Математическая модель задачи – это специальная логическая конструкция, целенаправленно описывающая в терминах математической теории объективный процесс или явление, лежащие в основе конкретной задачи. Процесс решения такой модели является своеобразным аналогом мыслительного процесса специалиста, принимающего решение.

Модель есть образ реального исследуемого объекта или явления, созданный при помощи определенного набора средств. Модели значительно облегчают понимание объектов (явлений), позволяют прогнозировать их поведение в интересующих нас условиях, применять унифицированные методы анализа. В модели концентрируются наиболее важные, с точки зрения рассматриваемой проблемы, признаки (свойства) изучаемого объекта (явления). Целью моделирования является создание достаточно точного, полного, лаконичного и удобного для восприятия и анализа описания.

Элементами математической модели являются переменные, параметры, связи (математические) и информация.

Общая квалификация математических моделей, как правило, производится по следующим признакам:

Поведению моделей во времени;

Видам входной информации,

Параметров, выражений, конструкций, составляющих математическую модель;

Структуре математической модели;

Типу используемого математического аппарата.

Согласно данной классификации математические модели бывают динамическими (время играет роль независимой переменной, и поведение системы меняется во времени); статическими (независящими от времени); квазистатическими или дискретно-событийными (поведение системы меняется от одного статического состояния к другому согласно внешним воздействиям). Если эти элементы модели достаточно точно установлены и поведение системы можно точно определить, то модель - детерминированная, в противном случае - стохастическая . Если информация и параметры являются непрерывными величинами, а математические связи устойчивы, то модель непрерывная , в противном случае - дискретная . Если параметры модели фиксированы и не изменяются в процессе моделирования согласно поведению объекта моделирования, то это модель с фиксированными параметрами , в противном случае - модель с изменяющимися во времени или в пространстве параметрами . Математическая модель может быть сложной, комплексной , иерархической , если можно найти элементарные подсистемы, составляющие её. Это очень важный вопрос, поскольку его решение позволяет значительно упростить моделирование, например, оперативное управление распределенными системами, особенно если модель можно представить в виде древовидной или сетевой структуры. По типу используемого математического аппарата будем говорить об аналитических, вероятностно-статистических и нечетких моделях.

Основные требования, предъявляемые к модели:

Адекватность (достоверность);

Полнота;

Неизбыточность;

Приемлемая трудоемкость.

Адекватность и полнота означают, что модель должна обладать всеми существенными (с точки зрения решаемой задачи) признаками объекта моделирования и с достаточной степенью точности не отличаться от него по этим признакам. Сюда же, в частности, относится проблема адекватности критерия оптимальности целям функционирования моделируемой системы. Относительно требования неизбыточности модель не должна быть «засорена» множеством мелких, второстепенных факторов, которые лишь усложняют математический анализ и делает результаты исследования трудно обозримыми. Приемлемая трудоемкость означает, что затраты на создание модели должны соответствовать установленным ограничениям на ресурсы и эффект от использования модели должен превышать затраты на ее построение. При этом при оценке издержек на моделирование следует учитывать затраты времени и усилий всех участников, задействованных как непосредственно в построении модели, так и сборе необходимой информации, расходы и время на обучение, стоимость обработки и хранения информации. Указанные требования к модели противоречивы. Например, с одной стороны, она должна быть достаточно полной, а с другой - достаточно простой и малозатратной. То есть создание математических моделей –это во многом творчество, требующее наличие соответствующих математических и прикладных знаний, опыта и квалификации.

2.2.2 Применительно к проблеме принятия решения можно говорить о модели ЗПР, модели среды принятия решения(описательной модели проблемной ситуации), модели процесса принятия решения, модели компьютерной системы принятия решения (системы поддержки принятия решений).

При определении модели конкретной ЗПР следует оценить ее относительно классификационных признаков, выделенных нами в рамках рассмотренной ранее системы классификации ЗПР и по результатам такой оценки определить модель ЗПР в виде кортежа соответствующих характеристик. Например, общая формальная модель ЗПР для индивидуального ЛПР может быть представлена в виде кортежа

;

а для группы ЛПР в виде кортежа

< So, T, R, S, G, B, A, К, F(f), L, A* >,

где So – проблемная ситуация; T –время для принятия решения; R – имеющиеся для принятия решения ресурсы; S = (S 1 , …, S n) – множество допустимых ситуаций, определяющих предметную область и тем самым уточняющих проблемную ситуацию So; G=(G 1 ,…,G k) – множество целей, преследуемых при принятии решения; B=(B 1 ,…,B L) – множество ограничений; A=(A 1 ,…,A m) – множество альтернативных вариантов решения; f – функция предпочтения ЛПР; K – критерии выбора; F(f) – функция группового предпочтения; L – принцип согласования индивидуальных предпочтений для формирования группового предпочтения; A* – оптимальное решение.

Поясним наличие в модели критериев выбора K и функции предпочтения. Опыт показывает, что в терминах критериев выбора чаще всего не удается выразить всю гамму «пристрастий», «вкусов» и предпочтений конкретного ЛПР. С помощью множества частных критериев, как правило возникающих при рассмотрения реальных ЗПР, лишь намечаются определенные цели, которые нередко оказываются весьма противоречивыми. Эти цели одновременно, как правило, достигнуты быть не могут, и поэтому требуется определенная дополнительная информация для осуществления компромисса. Иначе говоря, если ограничиться лишь множеством возможных решений и векторным критерием, то ЗПР оказывается «недоопределенной». Эта «недоопределенность» сказывается затем в слабой логической обоснованности выбора эффективного решения на основе векторного критерия. Для того чтобы осуществить обоснованный выбор, следует помимо векторного критерия располагать какими-то дополнительными сведениями о предпочтениях ЛПР. С этой целью необходимо включить в многокритериальную задачу функцию, описывающую отношения существующих предпочтений.

Для обозначения предпочтения решения А’ перед решением A” часто используется запись А’A”.Следует отметить, что не всякие два возможных решения А’ и A” связаны соотношением А’A” либо соотношениемA”А’. Могут существовать такие пары решений, что ЛПР не в состоянии отдать предпочтение какому-то одному из них.На практике способность ЛПР определить отношение предпочтения для любой пары допустимых альтернатив встречаются крайне редко (например, из-за невозможности абсолютно полно и точно определить последствия принимаемых решений).

При определении отношения предпочтения следует обеспечить выполнение двух следующих условий:

Отношение предпочтения является строгим в том смысле, что ни для какого допустимого решения А’ невозможно выполнение условия вида А’A’ - поскольку ни одно решение не может быть лучше самого себя;

Если А’A” и А”A’’’, то А’A’’’(свойство транзитивности).

Часто (например, при принятии решений в условиях управления иерархическими распределенными средами) возникает потребность в моделировании процесса принятия решения. Процесс принятия решений схематически представляется в виде так называемого дерева решений. Построение такого дерева базируются на декомпозиции процесса принятия решения - выделении самостоятельных функциональных подпроцессови более частных задач, а также установления взаимосвязи между ними, в результате чего общий процесс принятия решений представляется в виде решения последовательности взаимосвязанных иерархических локальных ЗПР. Основными принципами декомпозиции являются относительная самостоятельность каждого из подпроцессов (т.е. наличие конкретного объекта управления); наличие соответствующего набора функций и ЗПР с четко выраженными локальными целями принятия решения, согласующимися с общими целями принятия решения для системы в целом; оптимизация состава включенных в подпроцесс элементов. Этот вопрос будет рассмотрен позднее, при рассмотрении проблемы принятия решения в рамках проблемы оперативного менеджмента качества.

2.2.3 Основными этапами общего процесса моделирования являются:

1) анализ поставленной задачи;

2)анализ объекта моделирования и его среды с точки зрения поставленной задачи;

3) построение(синтез) модели;

4) проверка построенной модели на достоверность;

5) применение модели;

6)обновление модели(по мере необходимости).

1) Перед построении модели сначала необходимо определить главное назначением модели - какие выходные данные нужно получить, используя модель, чтобы помочь ЛПР разрешить стоящую перед ним проблему.

Затем следует определить, какая информация требуется для построения модели и какие нужны сведения на выходе. Кроме того, следует оценить расходы на создание модели и реакцию людей, которые должны будут ее использовать. Модель, затраты на построение и использование которой превышает получаемые от нее выгоды, никому не нужна, а слишком сложная модель может быть не понятна пользователям и не будет применяться на практике.

2) В основу модели кладется описание объекта, формируемое (в соответствии с решаемой задачи и доступной информации) на основе выделения составляющих объект элементов, выявления связи между ними, определения существенные для рассматриваемой задачи характеристик и параметров. На этом же этапе формируются, подлежащие последующей проверке гипотезы о закономерностях, присущих изучаемому объекту, о характере влияния на объект изменения тех или иных параметров и связей между элементами, изучаются взаимосвязи, определяющие возможные последствия принимаемых решений, а также устраняется нечеткие, неоднозначные высказывания или определения, которые заменяются, быть может, и приближенными, но четкими, не допускающими различных толкований высказываниями

3) Сущность математического моделирования состоит в подборе математических схем, адекватно описывающих процессы, происходящие в действительности.

При построении математической модели явление каким-то образом упрощается, схематизируется; из бесчисленного множества факторов, влияющих на явление, выделяется сравнительно небольшое количество важнейших, и полученная схема описывается с помощью того или другого математического аппарата. Общих способов построения математических моделей не существует. В каждом конкретном случае модель строится, исходя из поставленной задачи, доступных исходных данных, требуемой точности решения, личных предпочтений аналитика, создающего модель.

При построении математической модели выполняются следующие виды деятельности:

–анализ всех элементов системы, влияющих на эффективность принимаемых решений и оценка степени влияния каждого из них на функционирование организации при различных вариантах решений;

– исключение из перечня элементов, не влияющих (или несущественно влияющих)на выбор вариантов решений;

– предварительная группировка некоторых взаимосвязанных элементов для упрощения модели (например, расходы по аренде, содержанию помещений и другие объединить в условно-постоянные расходы);

– определение перечня элементов после уточнения их постоянного или переменного характера влияния на систему (в составе переменных элементов устанавливаются, в свою очередь, подэлементы системы, влияющие на их величину; например, транспортные расходы зависят от объема перемещенных товаров, расстояния, стоимости горючего и др.);

– закрепление за каждым подэлементом определенного символа и составление соответствующих математических конструкций.

Математическая модель обычно строится с ориентацией на предполагаемый метод решения задачи. С другой стороны, в процессе проведения математического исследования или интерпретации решения может понадобиться уточнить или даже существенно изменить математическую модель.

Как уже отмечалось выше, математические модели, применяемые в настоящее время в задачах принятия решений, можно грубо подразделить на три класса: аналитические, статистические и основанные на нечеткой формализации.

Для первых характерно установление формульных, аналитических зависимостей между параметрами задачи, записанных в любом виде: алгебраические уравнения, обыкновенные дифференциальные уравнения, уравнения с частными производными и т. д. Обычно с помощью аналитических моделей удается с удовлетворительной точностью описать какие-то сугубо технические процессы, в основу которых положены известные физические законы.

Использование статистических моделей предполагает наличие соответствующих вероятностно-статистических данных и закономерностей.

Использование моделей, основанных на нечеткой формализации, оправдано в случае отсутствия данных, позволяющих использовать два первых типа моделей.

Построенная модель должна быть подвергнута соответствующему анализу с целью обоснования. Наиболее важный момент - доказательство существования или получения решения в рамках сформулированной модели. Если это условие не выполняется, то следует скорректировать либо постановку задачи, либо способы ее математической формализации.

4) На практике почти всегда необходима проверка модели на достоверность. Во-первых, надо определить степень соответствия модели реальному явлению, установить, все ли существенные факторы реальной ситуации учтены в модели. Во-вторых, следует понять, насколько моделирование действительно помогает решить проблему. Желательно проверить модель на ситуации, имевшей место в прошлом.

Успешный результат сравнения (оценки) исследуемого объекта с моделью свидетельствует о достаточной степени изученности объекта, о правильности принципов, положенных в основу моделирования, и о том, что созданная модель работоспособна.

Часто первые результаты моделирования не удовлетворяют предъявленным требованиям. Это требует проведения дополнительных исследовании и соответствующего изменения модели.

5) Относительно применения модели следует учитывать, что основная причина недостаточно широкого использования моделей заключается в том, что руководители, для которых они создаются, часто не вполне понимают получаемые результаты и потому боятся их применять. Причиной является недостаток у них знаний в этой области. Для борьбы с этим системным аналитикам следует уделять значительно больше времени ознакомлению руководителей с возможностями и методикой использования моделей.

6) Обновление модели производится, если руководству потребуются выходные данные вболее удобной форме или дополнительные данные. Обновление модели может также потребоваться в случае изменения целей организации и соответствующих имкритериев принятия решений, либо при получении дополнительной информации, позволяющей уточнить, усовершенствовать текущую модель. Последняя ситуация связана с проблемой недостаточности, неточности априорной информации используемой для построения модели. Если внешняя среда подвижна, информацию о ней следует обновлять быстро, но на это может не хватать времени или это может оказаться слишком дорого. Информационные ограничения являются основной причиной недостоверности предпосылок, положенных в основу построения модели. Нередко возникают ситуации, когда невозможно получить информацию по всем важным факторам и использовать ее в модели. Следует соблюдать осторожность в отношении использования предположений, которые не могут быть точно оценены и объективно проверены (например, не поддается проверке предположение о росте продаж в будущем году на определенную сумму).

2.2.4 При построении модели следует учитывать следующие рекомендации:

Обычно сначала определяется основная более грубая конструкция (тип, общая схема) математической модели, а затем уточняются детали этой конструкции (конкретный перечень переменных и параметров, форма связей);

Следует избегать ненужной детализации модели, так как это излишне усложняет модель. То же можно сказать о таких характеристиках сложности модели, как используемые формы математических зависимостей, учет факторов случайности и неопределенности и т.д. Излишняя сложность и громоздкость модели затрудняют процесс исследования. Нужно учитывать не только реальные возможности информационного и математического обеспечения, но и сопоставлять затраты на моделирование с получаемым эффектом (при возрастании сложности модели прирост затрат может превысить прирост эффекта);

Одна из важных особенностей математических моделей -потенциальная возможность их использования для решения разнокачественных проблем. Поэтому, даже сталкиваясь с новой задачей, необходимо предварительно проанализировать возможность использования для ее решения уже известных моделей (или отдельных их составляющих);

Необходимо стремиться к тому, чтобы получить модель, принадлежащую хорошо изученному классу математических задач. Часто это удается сделать путем некоторого упрощения исходных предпосылок модели, не искажающих существенных черт моделируемого объекта.

Положительными характеристиками моделирования также являются:

– применение более совершенных проверенных практикой технологий принятия решения;

– высокая степень обоснованности решений;

– сокращение сроков принятия решений;

– возможность выполнения обратной операции.

Особенность обратной операции состоит в том, что, имея модель и исходные данные, можно не только принять решение, но и сориентироваться на требуемый результат и определить, какие исходные данные для этого необходимы. Так, например, ориентируясь на получение прибыли в объеме N, можно установить и количественные значения других показателей, прямо и косвенно влияющих на достижение планируемого результата (получение новых знаний о ситуации (объекте), отсутствующих ранее; формулировку выводов, которые невозможно получить при самых содержательных логических рассуждениях).

Этапы создания математических моделей

В общем случае под математической моделью объекта (системы) понимается любое математическое описание, отражающее с требуемой точностью поведения объекта (системы) в реальных условиях. Математическая модель отражает записанную на языке математики совокупность знаний, представлений и гипотез исследователя о моделируемом объекте. Поскольку эти знания никогда не бывают абсолютными, то модель лишь приближенно учитывает поведение реального объекта.

Математическая модель системы – это совокупность соотношений (формул, неравенств, уравнений, логических соотношений), определяющих характеристики состояний системы в зависимости от ее внутренних параметров, начальных условий, входных сигналов, случайных факторов и времени.

Процесс создания математической модели можно разбить на этапы отраженные на рис. 3.2.

Рис. 3.2 Этапы создания математической модели

1. Постановка проблемы и ее качественный анализ. Этот этап включает:

· выделение важнейших черт и свойств моделируемого объекта и абстрагирование от второстепенных;

· изучение структуры объекта и основных зависимостей, связывающих его элементы;

· формирование гипотез (хотя бы предварительных), объясняющих поведение и развитие объекта.

2. Построение математической модели. Это – этап формализации проблемы, выражения ее в виде конкретных математических зависимостей и отношений (функций, уравнений, неравенств и т.д.). Обычно сначала определяется основная конструкция (тип) математической модели, а затем уточняются детали этой конструкции (конкретный перечень переменных и параметров, форма связей). Таким образом, построение модели подразделяется в свою очередь на несколько стадий.

Неправильно полагать, что чем больше факторов (т.е. входных и выходных переменных состояния) учитывает модель, тем она лучше «работает» и дает лучшие результаты. То же можно сказать о таких характеристиках сложности модели, как используемые формы математических зависимостей (линейные и нелинейные), учет факторов случайности и неопределенности и т.д. Излишняя сложность и громоздкость модели затрудняют процесс исследования. Нужно не только учитывать реальные возможности информационного и математического обеспечения, но и сопоставлять затраты на моделирование с получаемым эффектом (при возрастании сложности модели нередко рост затрат на моделирование может превысить рост эффекта от внедрения моделей в задачи управления).

3. Математический анализ модели. Целью этого этапа является выяснение общих свойств модели. Здесь применяются чисто математические приемы исследования. Наиболее важный момент – доказательство существования решений в сформулированной модели (теорема существования). Если удается доказать, что математическая задача не имеет решения, то необходимость в последующей работе по первоначальному варианту модели отпадает; следует скорректировать либо постановку задачи, либо способы ее математической формализации. При аналитическом исследовании модели выясняются такие вопросы, как, например, единственно ли решение, какие переменные могут входить в решение, каковы будут соотношения между ними, в каких пределах и в зависимости от каких исходных условий они изменяются, каковы тенденции их изменений и т.д.

4. Подготовка исходной информации. Моделирование предъявляет жесткие требования к системе информации. В процессе подготовки информации широко используются методы теории вероятностей, теоретической и математической статистики. При системном математическом моделировании исходная информация, используемая в одних моделях, является результатом функционирования других моделей.

5. Численное решение. Этот этап включает разработку алгоритмов для численного решения задачи, составления программ на ЭВМ и непосредственное проведение расчетов. Здесь приобретают актуальности различные методы обработки данных, решения разнообразных уравнений, вычисления интегралов и т.п. Нередко расчеты по математической модели носят многовариантный, имитационный характер. Благодаря высокому быстродействию современных ЭВМ удается проводить многочисленные «модельные» эксперименты, изучая «поведение» модели при различных изменениях некоторых условий.

6. Анализ численных результатов и их применение. На этом заключительном этапе цикла встает вопрос о правильности и полноте результатов моделирования, об адекватности модели, о степени ее практической применимости. Математические методы проверки результатов могут выявлять некорректности построения модели и тем самым сужать класс потенциально правильных моделей.

Неформальный анализ теоретических выводов и численных результатов, получаемых посредством модели, сопоставление их с имеющимися знаниями и фактами действительности также позволяют обнаруживать недостатки исходной постановки задачи, сконструированной математической модели, ее информационного и математического обеспечения.

Поскольку современные математические задачи могут быть сложны по своей структуре, иметь большую размерность, то часто случается, что известные алгоритмы и программы для ЭВМ не позволяют решить задачу в первоначальном виде. Если невозможно в короткий срок разработать новые алгоритмы и программы, исходную постановку задачи и модель упрощают:

· снимают и объединяют условия, уменьшают число учитываемых факторов.

· нелинейные соотношения заменяют линейными и т.д.

Недостатки, которые не удается исправить на промежуточных этапах моделирования, устраняются в последующих циклах. Но результаты каждого цикла имеют и вполне самостоятельное значение. Начав исследование с построения простой модели, можно быстро получить полезные результаты, а затем перейти к созданию более совершенной модели, пополняемой новыми условиями, включающей уточненные математические зависимости.

Аннотация: В лекции описан процесс построения математической модели. Приведен словесный алгоритм процесса.

Для использования ЭВМ при решении прикладных задач прежде всего прикладная задача должна быть "переведена" на формальный математический язык, т.е. для реального объекта, процесса или системы должна быть построена его математическая модель .

Математические модели в количественной форме, с помощью логико-математических конструкций, описывают основные свойства объекта, процесса или системы, его параметры, внутренние и внешние связи .

Для построения математической модели необходимо:

  1. тщательно проанализировать реальный объект или процесс;
  2. выделить его наиболее существенные черты и свойства;
  3. определить переменные, т.е. параметры, значения которых влияют на основные черты и свойства объекта;
  4. описать зависимость основных свойств объекта, процесса или системы от значения переменных с помощью логико-математических соотношений (уравнения, равенства, неравенства, логико-математические конструкций);
  5. выделить внутренние связи объекта, процесса или системы с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций;
  6. определить внешние связи и описать их с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций.

Математическое моделирование , кроме исследования объекта, процесса или системы и составления их математического описания, также включает:

  1. построение алгоритма, моделирующего поведение объекта, процесса или системы;
  2. проверка адекватности модели и объекта, процесса или системы на основе вычислительного и натурного эксперимента;
  3. корректировка модели;
  4. использование модели.

Математическое описание исследуемых процессов и систем зависит от:

  1. природы реального процесса или системы и составляется на основе законов физики, химии, механики, термодинамики, гидродинамики, электротехники, теории пластичности , теории упругости и т.д.
  2. требуемой достоверности и точности изучения и исследования реальных процессов и систем.

На этапе выбора математической модели устанавливаются: линейность и нелинейность объекта, процесса или системы, динамичность или статичность, стационарность или нестационарность, а также степень детерминированности исследуемого объекта или процесса. При математическом моделировании сознательно отвлекаются от конкретной физической природы объектов, процессов или систем и, в основном, сосредотачиваются на изучении количественных зависимостей между величинами, описывающими эти процессы.

Математическая модель никогда не бывает полностью тождественна рассматриваемому объекту, процессу или системе. Основанная на упрощении, идеализации , она является приближенным описанием объекта. Поэтому результаты, полученные при анализе модели, носят приближенный характер. Их точность определяется степенью адекватности (соответствия) модели и объекта.

Обычно начинается с построения и анализа простейшей, наиболее грубой математической модели рассматриваемого объекта, процесса или системы. В дальнейшем, в случае необходимости, модель уточняется, делается ее соответствие объекту более полным.

Возьмем простой пример. Нужно определить площадь поверхности письменного стола. Обычно для этого измеряют его длину и ширину, а затем перемножают полученные числа. Такая элементарная процедура фактически обозначает следующее: реальный объект (поверхность стола) заменяется абстрактной математической моделью – прямоугольником. Прямоугольнику приписываются размеры, полученные в результате измерения длины и ширины поверхности стола, и площадь такого прямоугольника приближенно принимается за искомую площадь стола.

Однако модель прямоугольника для письменного стола – это простейшая, наиболее грубая модель. При более серьезном подходе к задаче прежде, чем воспользоваться для определения площади стола моделью прямоугольника, эту модель нужно проверить. Проверки можно осуществить следующим образом: измерить длины противоположных сторон стола, а также длины его диагоналей и сравнить их между собой. Если, с требуемой степенью точности, длины противоположных сторон и длины диагоналей попарно равны между собой, то поверхность стола действительно можно рассматривать как прямоугольник . В противном случае модель прямоугольника придется отвергнуть и заменить моделью четырехугольника общего вида. При более высоком требовании к точности может возникнуть необходимость пойти в уточнении модели еще дальше, например, учесть закругления углов стола.

С помощью этого простого примера было показано, что математическая модель не определяется однозначно исследуемым объектом, процессом или системой. Для одного и того же стола мы можем принять либо модель прямоугольника, либо более сложную модель четырехугольника общего вида, либо четырехугольника с закругленными углами. Выбор той или иной модели определяется требованием точности. С повышением точности модель приходится усложнять, учитывая новые и новые особенности изучаемого объекта, процесса или системы.

Рассмотрим другой пример: исследование движения кривошипно-шатунного механизма (Рис. 2.1) .


Рис. 2.1.

Для кинематического анализа этого механизма, прежде всего, необходимо построить его кинематическую модель. Для этого:

  1. Заменяем механизм его кинематической схемой, где все звенья заменены жесткими связями ;
  2. Пользуясь этой схемой, мы выводим уравнение движения механизма;
  3. Дифференцируя последнее, получаем уравнения скоростей и ускорения, которые представляют собой дифференциальные уравнения 1-го и 2-го порядка.

Запишем эти уравнения:

где С 0 – крайнее правое положение ползуна С:

r – радиус кривошипа AB;

l – длина шатуна BC;

– угол поворота кривошипа;

Полученные трансцендентные уравнения представляют математическую модель движения плоского аксиального кривошипно-шатунного механизма, основанную на следующих упрощающих предположениях:

  1. нас не интересовали конструктивные формы и расположение масс, входящих в механизм тел, и все тела механизма мы заменили отрезками прямых. На самом деле, все звенья механизма имеют массу и довольно сложную форму. Например, шатун – это сложное сборное соединение, форма и размеры которого, конечно, будут влиять на движение механизма;
  2. при движения рассматриваемого механизма мы также не учитывали упругость входящих в механизм тел, т.е. все звенья рассматривали как абстрактные абсолютно жесткие тела. В действительности же, все входящие в механизм тела – упругие тела. Они при движении механизма будут как-то деформироваться, в них могут даже возникнуть упругие колебания. Это все, конечно, также будет влиять на движение механизма;
  3. мы не учитывали погрешность изготовления звеньев, зазоры в кинематических парах A, B, C и т.д.

Таким образом, важно еще раз подчеркнуть, что, чем выше требования к точности результатов решения задачи, тем больше необходимость учитывать при построении математической модели особенности изучаемого объекта, процесса или системы. Однако, здесь важно во время остановиться, так как сложная математическая модель может превратиться в трудно разрешимую задачу.

Наиболее просто строится модель, когда хорошо известны законы, определяющие поведение и свойства объекта, процесса или системы, и имеется большой практический опыт их применения.

Более сложная ситуация возникает тогда, когда наши знания об изучаемом объекте, процессе или системе недостаточны. В этом случае при построении математической модели приходится делать дополнительные предположения, которые носят характер гипотез, такая модель называется гипотетической. Выводы, полученные в результате исследования такой гипотетической модели, носят условный характер. Для проверки выводов необходимо сопоставить результаты исследования модели на ЭВМ с результатами натурного эксперимента. Таким образом, вопрос применимости некоторой математической модели к изучению рассматриваемого объекта, процесса или системы не является математическим вопросом и не может быть решен математическими методами.

Основным критерием истинности является эксперимент, практика в самом широком смысле этого слова.

Построение математической модели в прикладных задачах – один из наиболее сложных и ответственных этапов работы. Опыт показывает, что во многих случаях правильно выбрать модель – значит решить проблему более, чем наполовину. Трудность данного этапа состоит в том, что он требует соединения математических и специальных знаний. Поэтому очень важно, чтобы при решении прикладных задач математики обладали специальными знаниями об объекте, а их партнеры, специалисты, – определенной математической культурой, опытом исследования в своей области, знанием ЭВМ и программирования.

Всего, найдите в учебниках или справочниках формулы, характеризующие его закономерности. Заранее подставьте во те из параметров, которые являются константами. Теперь найдите неизвестную информацию о ходе процесса в той или иной его стадии, подставив в формулу известные данные о его ходе в данной стадии.
Например, необходимо моделировать изменение мощности, выделяющейся на резисторе, в зависимости от напряжения на ней. В этом случае, придется воспользоваться известным сочетанием формул: I=U/R, P=UI

При необходимости, составьте график или графиков обо всем ходе процесса. Для этого разбейте его ход на некоторое количество точек (чем их больше, тем точнее результат, но вычисления). Осуществите вычисления для каждой из точек. Особенно трудоемкими будет расчет в том случае, если независимо друг от друга меняется несколько параметров, поскольку осуществить его необходимо для всех их сочетаний.

Если объем расчетов значителен, воспользуйтесь вычислительной техникой. Используйте тот язык программирования, которым вы хорошо владеете. В частности, чтобы рассчитать изменение мощности на нагрузке сопротивлением в 100 Ом при изменении напряжения от 1000 до 10000 В с шагом в 1000 В (в реальности построить такую нагрузку затруднительно, поскольку мощность на ней достигнет мегаватта), можно такую программу на Бейсик:
10 R=100

20 FOR U=1000 TO 10000 STEP 1000

При желании, воспользуйтесь для моделирования одного процесса другим, подчиняющимся тем же закономерностям. Например, маятник можно заменить электрическим колебательным контуром, или наоборот. Иногда имеется возможность воспользоваться в качестве моделирующего тем же явлением, что и моделируемое, но в уменьшенном или увеличенном масштабе. Например, если взять уже упомянутое сопротивление в 100 Ом, но подавать на него напряжения в диапазоне не от 1000 до 10000, а от 1 до 10 В, то мощность, выделяемая на нем, будет изменяться не от 10000 до 1000000 Вт, а от 0,01 до 1 Вт. Такая уместится на столе, а выделяемую мощность можно будет измерить обычным калориметром. После этого результат измерения будет необходимо умножить на 1000000.
Учитывайте, что масштабированию поддаются не все явления. Например, известно, что если все детали теплового двигателя уменьшить или увеличить в одинаковое число раз, то есть, пропорционально, то велика вероятность, что он не заработает. Поэтому при изготовлении двигателей разных размеров увеличения или уменьшения для каждой из его деталей берут различные.