Увеличение микроскопа. Оптическое и геометрическое увеличение оптической системы. Разница между увеличением и разрешением

Популяризация исследований микромира в домашних условиях способствует большому притоку новичков, решивших приобщиться к этому занятию и заодно привлечь своих детей. Оставшись с прибором «один на один» многие гадают какое увеличение дает микроскоп. Кажется, что чем оно больше, тем лучше. Но это не так, ибо на практике есть пределы оптики, выше которых «не прыгнешь». Поэтому, если у вас детская модель начального уровня с оптоволокном вместо стекла, то 100-200х-это максимум, на что она способна.

Какое увеличение дает микроскоп можно легко подсчитать по простой формуле. На используемом объективе (они располагаются на револьверной головке над предметным столиком) написаны значения, обычно их три: 4х, 10х и 40х. На окуляре (вставляется в окулярную трубку, в него смотрим) также есть маркировка, например, 16х.

Тогда просто перемножим их кратности! Пример: 40*16=640 крат.

Однако, у несложной математики имеется подвох, которым часто пользуются производители микроскопов-игрушек (то есть не настоящих). Установив на хлипкие пластиковые револьверы очень тонкие по диаметру оптические элементы они добиваются, что теоретически можно получить 900х, а то и 1200х. На деле оказывается, что перед взором предстает мутное пятно, ничего не возможно рассмотреть. Неизбежно наступает разочарование и ставится жирный крест на микроскопии, как интересном и доставляющем удовольствие хобби.

Почему такое происходит? По причине неосведомленности новоиспечённых биологов. Существует термин «полезное увеличение»: оптимальное, качественное. На нем комфортнее всего рассматривать любые образцы: от микропрепаратов до твердых предметов, не пропускающих свет. Оно осуществляется без потери качества картинки, не болят и не устают глаза, не раздражает рябь и засветка. Исследователь чувствует себя комфортно, будто между ним и объектом наблюдения ничего лишнего нет. Именно это надо ставить во главе всего и четко понимать, чем грозят выходы за лимиты полезности. Разве кому-то будет приятно наблюдать инфузорию туфельку, если даже не различить привычных очертаний, которые помним из учебников?

Рекомендации будут такими: для использования подойдет любой микроскоп , который эксплуатируется в школах (ведь не просто так министерство образования позволяет их закупать!) - увеличение до 640х, это достаточно, чтобы с комфортом изучить курс биологии с 7 по 11 классы. Например, самый тоненький человеческий волос будет размером с палец среднестатистического взрослого человека. Перечень доступных для просмотра препаратов солидный: одноклеточные организмы, срезы растений (клетки), жизнь в капле воды. Если есть встроенная верхняя подсветка или настольная лампа, то к списку можно добавить металлические изделия, камни, ткани и т.д. Как вы уже поняли для этого не нужно огромное приближение (тем более бесполезное, с искажениями), а важнее всего позаботиться о том, чтобы сама техника была высококачественной. От этого зависит весь дальнейший путь по таинственным дебрям микробиологии - или вы получите удовлетворение и новые знания, или нет.

Cтраница 1


Увеличение микроскопа должно быть достаточным для того, чтобы рассмотреть расстояния между отдельными частицами. Так как последние представляются глазу наблюдателя как светлые точки, окруженные ореолами, по размерам значительно превосходящими сами частицы, то для наблюдений всегда следует пользоваться только достаточно сильно разбавленными коллоидными растворами.  

Увеличение микроскопа должно находиться в интервале от 500 до 1000 апертур данного объектива. Увеличение N - 500 А является нижним пределом увеличения, a N - 1000 А - верхним. Если увеличение меньше нижнего предела, то не используется разрешающая способность микроскопа. Если увеличение больше верхнего предела, то качество изображения ухудшается.  

Увеличение микроскопа должно находиться в интервале от 500 до 1000 апертур данного объектива. Увеличение N 500 А является нижним пределом увеличения, а N 1000 А - верхним. Если увеличение меньше нижнего предела, то не используется разрешающая способность микроскопа. Если увеличение больше верхнего предела, то качество изображения ухудшается.  

Увеличение микроскопа зависит от сменных объективов.  

Увеличение микроскопа должно быть достаточно. Отверстие должно освещаться направленным пучком лучей. Освещение рассеянным светом недопустимо.  


Увеличение микроскопа равно произведению соответствующих увеличений объектива и окуляра. Основное увеличение обеспечивается объективом, оно может достигать ШО. Если необходимо точно определить увеличение проецируемого изображения, то в качестве объекта следует использовать пластинку с микрометрической шкалой (объект-микрометр), на которой нанесены через каждые 0.01 мм деления на общей длине 1 мм.  

Увеличение микроскопа, меньшее полезного, не позволяет полностью использовать возможности прибора. Увеличение микроскопа, большее полезного, не способствует выявлению новых деталей объекта, а лишь увеличивает масштаб изображения и делает изображение менее четким, а поэтому такое повышение увеличения не только бесполезно, но и вредно.  


Увеличение микроскопа должно быть небольшим, чтобы изображение нити не искажалось стенками трубки; из этих же соображений нельзя работать с большими амплитудами. Если в трубку вклеить окошки из плоскопараллельных стекол, то отпадает главное преимущество этого манометра-возможность прогрева во время откачки. В качестве осветителя используют автомобильную лампочку, накаливаемую через трансформатор; еще лучше применить стандартный осветитель для микроскопа, выпускаемый нашей промышленностью.  

Схема хода лучей в световом (а, электронном электромагнитном (б и электронном электростатическом (в микроскопах.  

Увеличение системы - важный фактор, в основе которого лежит выбор того или другого микроскопа в зависимости от решения необходимых задач. Все мы привыкли к тому, что проводить контроль полупроводниковых элементов необходимо на инспекционном микроскопе с увеличением 1000 и более крат, изучать насекомых можно, работая с 50 кратным стереомикроскопом, а луковые чешуйки, окрашенные йодом или зеленкой, мы изучали в школе на монокулярном микроскопе, когда понятие увеличения еще не было нам знакомо.

Но как интерпретировать понятие увеличения, когда перед нами находится цифровой или конфокальный микроскоп, а на объективах стоят значения 2000х, 5000х? Что это означает, будет ли 1000 кратное увеличение на оптическом микроскопе давать изображение, аналогичное цифровому 1000 кратному микроскопу? Об этом вы узнаете в этой статье.

Оптическое увеличение системы

Когда мы работаем с лабораторным или стереоскопическим микроскопом, подсчет текущего увеличения системы не составляет труда. Необходимо перемножить увеличение всех оптических компонентов системы. Обычно, в случае стереомикроскопа это объектив, трансфокатор или увеличительный барабан и окуляры.
В случае обычного лабораторного микроскопа дело обстоит еще проще – общее увеличение системы = кратность окуляров умноженная на кратность объектива, установленного в рабочую позицию. Важно помнить, что иногда встречаются специфические модели тубусов микроскопа, имеющие увеличивающий или уменьшающий фактор (особенно распространено для старых моделей микроскопов Leitz). Также, дополнительные оптические компоненты, будь то источник коаксиального освещения в стереомикроскопе или промежуточный адаптер для камеры, располагающийся под тубусом, могут иметь дополнительный фактор увеличения.


Дополнительные оптические компоненты иногда имеют свой фактор увеличения, отличный от 1. В данном случае, коаксиальный осветитель (поз. 2) стереомикроскопа Olympus SZX16 имеет дополнительный увеличивающий фактор 1,5х.

К примеру, стереомикроскоп Olympus SZX-16 с окулярами 10х, объективом 2х, трансфокатором в позиции 8х и блоком коаксиального освещения с фактором 1,5х будет обладать общим оптическим увеличением 10х2х8х1,5 = 240 крат.


Принципиальная схема получения изображения на световом микроскопе. Окуляр увеличивает изображение, построенное объективом и формирует мнимое изображение.

Под оптическим увеличением (Г) в таком случае следует понимать отношение тангенса угла наклона луча, вышедшего из оптической системы в пространство изображений, к тангенсу угла сопряженного ему луча в пространстве предметов. Либо отношение длины, сформированного оптической системой изображения отрезка, перпендикулярного оси оптической системы, к длине самого отрезка

Геометрическое увеличение системы

В случае, когда у системы нет окуляров, а увеличенное изображение формируется камерой на экране монитора, к примеру, как на микроскопе Keyence VHX-5000, следует переходить к термину геометрического увеличения оптической системы.
Геометрическое увеличение микроскопа – отношение линейного размера изображения объекта на мониторе к реальному размеру изучаемого объекта.
Получить значение геометрического увеличения можно перемножив следующие величины: оптическое увеличение объектива, оптическое увеличение адаптера камеры, отношение диагонали монитора к диагонали матрицы камеры.
К примеру, при работе на лабораторном микроскопе с объективом 50х, адаптером камеры 0,5х, камерой 1/2.5” и, выводя изображение на монитор ноутбука 14”, мы получим геометрическое увеличение системы = 50х0,5х(14/0,4) = 875х.
Хотя оптическое увеличение при этом будет равно 500х в случае 10х окуляров.

Цифровые микроскопы, конфокальные профилометры, электронные микроскопы и другие системы, формирующие цифровое изображение объекта на экране монитора оперируют понятием геометрического увеличения. Не стоит путать это понятие с оптическим увеличением.

Разрешение микроскопа

Широко распространено заблуждение, что разрешение микроскопа и его увеличение связаны между собой жесткой связью - чем больше увеличение, тем более мелкие объекты мы сможем в него увидеть. Это не верно. Самым важным фактором всегда остается разрешение оптической системы. Ведь увеличение неразрешенного изображения не даст нам о нем новой информации.

Разрешение микроскопа зависит от числового значения апертуры объектива, а также от длины волны источника освещения. Как вы видите, параметра увеличения системы в этой формуле нет.


где λ - усредненная длина волны источника света, NA – числовая апертура объектива, R - разрешение оптической системы.

При использовании объектива с NA 0,95 на лабораторном микроскопе с галогенным источником (средняя длина волны порядка 500 нм) мы получаем разрешение около 300 нм.

Как видно из принципиальной схемы светового микроскопа, окуляры увеличивают действительное изображение объекта. Если, к примеру, повысить кратность увеличения окуляров в 2 раза (вставить в микроскоп окуляры 20х) - то общее увеличение системы удвоится, но разрешение при этом останется прежним.

Важное замечание

Предположим, что у нас есть два варианта построения простого лабораторного микроскопа. Первый построим, используя объектив 40х NA 0,65 и окуляры 10х. Второй же будет использовать объектив 20х NA 0,4 окуляры 20x.

Увеличение микроскопов в обоих вариантах будет одинаковое = 400х (простое перемножение увеличения объектива и окуляров). А вот разрешение в первом варианте будет выше, чем во втором, так как числовая апертура объектива 40х больше. К тому же не стоит забывать о поле зрения окуляров, у 20х этот параметр на 20-25% ниже.