Применение корреляции Спирмена и Пирсона. Коэффициент ранговой корреляции rs Спирмена

- это количественная оценка статистического изучения связи между явлениями, используемая в непараметрических методах.

Показатель показывает, как отличается полученная при наблюдении сумма квадратов разностей между рангами от случая отсутствия связи.

Назначение сервиса . С помощью данного онлайн-калькулятора производится:

  • расчет коэффициента ранговой корреляции Спирмена;
  • вычисление доверительного интервала для коэффициента и оценка его значимости;

Коэффициент ранговой корреляции Спирмена относится к показателям оценки тесноты связи. Качественную характеристику тесноты связи коэффициента ранговой корреляции, как и других коэффициентов корреляции, можно оценить по шкале Чеддока .

Расчет коэффициента состоит из следующих этапов:

Свойства коэффициента ранговой корреляции Спирмена

Область применения . Коэффициент корреляции рангов используется для оценки качества связи между двумя совокупностями. Кроме этого, его статистическая значимость применяется при анализе данных на гетероскедастичность .

Пример . По выборке данных наблюдаемых переменных X и Y:

  1. составить ранговую таблицу;
  2. найти коэффициент ранговой корреляции Спирмена и проверить его значимость на уровне 2a
  3. оценить характер зависимости
Решение. Присвоим ранги признаку Y и фактору X .
X Y ранг X, d x ранг Y, d y
28 21 1 1
30 25 2 2
36 29 4 3
40 31 5 4
30 32 3 5
46 34 6 6
56 35 8 7
54 38 7 8
60 39 10 9
56 41 9 10
60 42 11 11
68 44 12 12
70 46 13 13
76 50 14 14

Матрица рангов.
ранг X, d x ранг Y, d y (d x - d y) 2
1 1 0
2 2 0
4 3 1
5 4 1
3 5 4
6 6 0
8 7 1
7 8 1
10 9 1
9 10 1
11 11 0
12 12 0
13 13 0
14 14 0
105 105 10

Проверка правильности составления матрицы на основе исчисления контрольной суммы:

Сумма по столбцам матрицы равны между собой и контрольной суммы, значит, матрица составлена правильно.
По формуле вычислим коэффициент ранговой корреляции Спирмена.


Связь между признаком Y и фактором X сильная и прямая
Значимость коэффициента ранговой корреляции Спирмена
Для того чтобы при уровне значимости α проверить нулевую гипотезу о равенстве нулю генерального коэффициента ранговой корреляции Спирмена при конкурирующей гипотезе H i . p ≠ 0, надо вычислить критическую точку:

где n - объем выборки; ρ - выборочный коэффициент ранговой корреляции Спирмена: t(α, к) - критическая точка двусторонней критической области, которую находят по таблице критических точек распределения Стьюдента, по уровню значимости α и числу степеней свободы k = n-2.
Если |p| < Т kp - нет оснований отвергнуть нулевую гипотезу. Ранговая корреляционная связь между качественными признаками не значима. Если |p| > T kp - нулевую гипотезу отвергают. Между качественными признаками существует значимая ранговая корреляционная связь.
По таблице Стьюдента находим t(α/2, k) = (0.1/2;12) = 1.782

Поскольку T kp < ρ , то отклоняем гипотезу о равенстве 0 коэффициента ранговой корреляции Спирмена. Другими словами, коэффициент ранговой корреляции статистически - значим и ранговая корреляционная связь между оценками по двум тестам значимая.

Метод ранговой корреляции Спирмена позволяет определить тесноту (силу) и направление корреляционной связи между двумя признаками или двумя профилями (иерархиями) признаков.

Для подсчета ранговой корреляции необходимо располагать двумя рядами значений,

которые могут быть проранжированы. Такими рядами значений могут быть:

1) два признака, измеренные в одной и той же группе испытуемых;

2) две индивидуальные иерархии признаков, выявленные у двух испытуемых по одному и тому же набору признаков;

3) две групповые иерархии признаков,

4) индивидуальная и групповая иерархии признаков.

Вначале показатели ранжируются отдельно по каждому из признаков.

Как правило, меньшему значению признака начисляется меньший ранг.

В первом случае (два признака) ранжируются индивидуальные значения по первому признаку, полученные разными испытуемыми, а затем индивидуальные значения по второму признаку.

Если два признака связаны положительно, то испытуемые, имеющие низкие ранги по одному из них, будут иметь низкие ранги и по другому, а испытуемые, имеющие высокие ранги по

одному из признаков, будут иметь по другому признаку также высокие ранги. Для подсчета rs необходимо определить разности (d) между рангами, полученными данным испытуемым по обоим признакам. Затем эти показатели d определенным образом преобразуются и вычитаются из 1. Чем

меньше разности между рангами, тем больше будет rs, тем ближе он будет к +1.

Если корреляция отсутствует, то все ранги будут перемешаны и между ними не будет

никакого соответствия. Формула составлена так, что в этом случае rs окажется близким к 0.

В случае отрицательной корреляции низким рангам испытуемых по одному признаку

будут соответствовать высокие ранги по другому признаку, и наоборот. Чем больше несовпадение между рангами испытуемых по двум переменным, тем ближе rs к -1.

Во втором случае (два индивидуальных профиля), ранжируются индивидуальные

значения, полученные каждым из 2-х испытуемым по определенному (одинаковому для них обоих) набору признаков. Первый ранг получит признак с самым низким значением; второй ранг – признак с более высоким значением и т.д. Очевидно, что все признаки должны быть измерены в одних и тех же единицах, иначе ранжирование невозможно. Например, невозможно проранжировать показатели по личностному опроснику Кеттелла (16PF), если они выражены в "сырых" баллах, поскольку по разным факторам диапазоны значений различны: от 0 до 13, от 0 до

20 и от 0 до 26. Мы не можем сказать, какой из факторов будет занимать первое место по выраженности, пока не приведем все значения к единой шкале (чаще всего это шкала стенов).

Если индивидуальные иерархии двух испытуемых связаны положительно, то признаки, имеющие низкие ранги у одного из них, будут иметь низкие ранги и у другого, и наоборот. Например, если у одного испытуемого фактор Е (доминантность) имеет самый низкий ранг, то и у другого испытуемого он должен иметь низкий ранг, если у одного испытуемого фактор С

(эмоциональная устойчивость) имеет высший ранг, то и другой испытуемый должен иметь по

этому фактору высокий ранг и т.д.

В третьем случае (два групповых профиля), ранжируются среднегрупповые значения, полученные в 2-х группах испытуемых по определенному, одинаковому для двух групп, набору признаков. В дальнейшем линия рассуждений такая же, как и в предыдущих двух случаях.

В случае 4-ом (индивидуальный и групповой профили), ранжируются отдельно индивидуальные значения испытуемого и среднегрупповые значения по тому же набору признаков, которые получены, как правило, при исключении этого отдельного испытуемого – он не участвует в среднегрупповом профиле, с которым будет сопоставляться его индивидуальный профиль. Ранговая корреляция позволит проверить, насколько согласованы индивидуальный и групповой профили.

Во всех четырех случаях значимость полученного коэффициента корреляции определяется по количеству ранжированных значений N. В первом случае это количество будет совпадать с объемом выборки n. Во втором случае количеством наблюдений будет количество признаков, составляющих иерархию. В третьем и четвертом случае N – это также количество сопоставляемых признаков, а не количество испытуемых в группах. Подробные пояснения даны в примерах. Если абсолютная величина rs достигает критического значения или превышает его, корреляция достоверна.

Гипотезы.

Возможны два варианта гипотез. Первый относится к случаю 1, второй – к трем остальным случаям.

Первый вариант гипотез

H0: Корреляция между переменными А и Б не отличается от нуля.

H1: Корреляция между переменными А и Б достоверно отличается от нуля.

Второй вариант гипотез

H0: Корреляция между иерархиями А и Б не отличается от нуля.

H1: Корреляция между иерархиями А и Б достоверно отличается от нуля.

Ограничения коэффициента ранговой корреляции

1. По каждой переменной должно быть представлено не менее 5 наблюдений. Верхняя граница выборки определяется имеющимися таблицами критических значений.

2. Коэффициент ранговой корреляции Спирмена rs при большом количестве одинаковых рангов по одной или обеим сопоставляемым переменным дает огрубленные значения. В идеале оба коррелируемых ряда должны представлять собой две последовательности несовпадающих значений. В случае, если это условие не соблюдается, необходимо вносить поправку на одинаковые ранги.

Коэффициент ранговой корреляции Спирмена подсчитывается по формуле:

Если в обоих сопоставляемых ранговых рядах присутствуют группы одинаковых рангов, перед подсчетом коэффициента ранговой корреляции необходимо внести поправки на одинаковые ранги Та и Тв:

Та = Σ (а3 – а)/12,

Тв = Σ (в3 – в)/12,

где а – объем каждой группы одинаковых рангов в ранговом ряду А, в – объем каждой

группы одинаковых рангов в ранговом ряду В.

Для подсчета эмпирического значения rs используют формулу:

Расчет коэффициента ранговой корреляции Спирмена rs

1. Определить, какие два признака или две иерархии признаков будут участвовать в

сопоставлении как переменные А и В.

2. Проранжировать значения переменной А, начисляя ранг 1 наименьшему значению, в соответствии с правилами ранжирования (см. П.2.3). Занести ранги в первый столбец таблицы по порядку номеров испытуемых или признаков.

3. Проранжировать значения переменной В, в соответствии с теми же правилами. Занести ранги во второй столбец таблицы по порядку номеров испытуемых или признаков.

5. Возвести каждую разность в квадрат: d2. Эти значения занести в четвертый столбец таблицы.

Та = Σ (а3 – а)/12,

Тв = Σ (в3 – в)/12,

где а – объем каждой группы одинаковых рангов в ранговом ряду А; в – объем каждой группы

одинаковых рангов в ранговом ряду В.

а) при отсутствии одинаковых рангов

rs  1 − 6 ⋅

б) при наличии одинаковых рангов

Σd 2  T  T

r  1 − 6 ⋅ a в,

где Σd2 – сумма квадратов разностей между рангами; Та и Тв – поправки на одинаковые

N – количество испытуемых или признаков, участвовавших в ранжировании.

9. Определить по Таблице (см. Приложение 4.3) критические значения rs для данного N. Если rs, превышает критическое значение или, по крайней мере, равен ему, корреляция достоверно отличается от 0.

Пример 4.1.При определении степени зависимости реакции употребления алкоголя на глазодвигательную реакцию в испытуемой группе были получены данные до употребления алкоголя и после употребления. Зависит ли реакция испытуемого от состояния опьянения?

Результаты эксперимента:

До:16, 13, 14, 9, 10, 13, 14, 14, 18, 20, 15, 10, 9, 10, 16, 17, 18. После: 24, 9, 10, 23, 20, 11, 12, 19, 18, 13, 14, 12, 14, 7, 9, 14. Сформулируем гипотезы:

Н0: корреляция между степенью зависимости реакции до употребления алкоголя и после не отличается от нуля.

Н1: корреляция между степенью зависимости реакции до употребления алкоголя и после достоверно отличается от нуля.

Таблица 4.1. Расчет d2 для рангового коэффициента корреляции Спирмена rs при сопоставлении показателей глазодвигательной реакции до эксперимента и после (N=17)

значения

значения

Так как, мы имеем повторяющиеся ранги, то в данном случае будем применять формулу с поправкой на одинаковые ранги:

Та= ((23-2)+(33-3)+(23-2)+(33-3)+(23-2)+(23-2))/12=6

Тb =((23-2)+(23-2)+(33-3))/12=3

Найдем эмпирическое значение коэффициента Спирмена:

rs = 1- 6*((767,75+6+3)/(17*(172-1)))=0,05

По таблице (приложение 4.3) находим критические значения коэффициента корреляции

0,48 (p ≤ 0,05)

0,62 (p ≤ 0,01)

Получаем

rs=0,05∠rкр(0,05)=0,48

Вывод: Н1гипотеза отвергается и принимается Н0. Т.е. корреляция между степенью

зависимости реакции до употребления алкоголя и после не отличается от нуля.

Студента-психолога (социолога, менеджера, управленца и др.) нередко интересует, как связаны между собой две или большее количество переменных в одной или нескольких изучаемых группах.

В математике для описания связей между переменными величинами используют понятие функции F, которая ставит в соответствие каждому определенному значению независимой переменной X определенное значение зависимой переменной Y. Полученная зависимость обозначается как Y=F(X).

При этом виды корреляционных связей между измеренными признаками могут быть различны: так, корреляция бывает линейной и нелинейной, положительной и отрицательной. Она линейна - если с увеличением или уменьшением одной переменной X,вторая переменная Y в среднем либо также растет, либо убывает. Она нелинейна, если при увеличении одной величины характер изменения второй не линеен, а описывается другими законами.

Корреляция будет положительной, если с увеличением переменной X переменная Y в среднем также увеличивается, а если с увеличением X переменная Y имеет в среднем тенденцию к уменьшению, то говорят о наличии отрицательной корреляции. Возможна ситуация, когда между переменными невозможно установить какую-либо зависимость. В этом случае говорят об отсутствии корреляционной связи.

Задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (линейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимости полученных коэффициентов корреляции.

Коэффициент корреляции рангов, предложенный К. Спирменом, относится к непараметрическим показателям связи между переменными, измеренными в ранговой шкале. При расчете этого коэффициента не требуется никаких предположений о характере распределений признаков в генеральной совокупности. Этот коэффициент определяет степень тесноты связи порядковых признаков, которые в этом случае представляют собой ранги сравниваемых величин.

Ранговый коэффициент линейной корреляции Спирмена подсчитывается по формуле:

где n - количество ранжируемых признаков (показателей, испытуемых);
D - разность между рангами по двум переменным для каждого испытуемого;
D2 - сумма квадратов разностей рангов.

Критические значения коэффициента корреляции рангов Спирмена представлены ниже:

Величина коэффициента линейной корреляции Спирмена лежит в интервале +1 и -1. Коэффициент линейной корреляции Спирмена может быть положительным и отрицательным, характеризуя направленность связи между двумя признаками, измеренными в ранговой шкале.

Если коэффициент корреляции по модулю оказывается близким к 1, то это соответствует высокому уровню связи между переменными. Так, в частности, при корреляции переменной величины с самой собой величина коэффициента корреляции будет равна +1. Подобная связь характеризует прямо пропорциональную зависимость. Если же значения переменной X будут распложены в порядке возрастания, а те же значения (обозначенные теперь уже как переменная Y) будут располагаться в порядке убывания, то в этом случае корреляция между переменными Х и Y будет равна точно -1. Такая величина коэффициента корреляции характеризует обратно пропорциональную зависимость.

Знак коэффициента корреляции очень важен для интерпретации полученной связи. Если знак коэффициента линейной корреляции - плюс, то связь между коррелирующими признаками такова, что большей величине одного признака (переменной) соответствует большая величина другого признака (другой переменной). Иными словами, если один показатель (переменная) увеличивается, то соответственно увеличивается и другой показатель (переменная). Такая зависимость носит название прямо пропорциональной зависимости.

Если же получен знак минус, то большей величине одного признака соответствует меньшая величина другого. Иначе говоря, при наличии знака минус, увеличению одной переменной (признака, значения) соответствует уменьшение другой переменной. Такая зависимость носит название обратно пропорциональной зависимости. При этом выбор переменной, которой приписывается характер (тенденция) возрастания - произволен. Это может быть как переменная X, так и переменная Y. Однако если считается, что увеличивается переменная X, то переменная Y будет соответственно уменьшаться, и наоборот.

Рассмотрим пример корреляции Спирмена.

Психолог выясняет, как связаны между собой индивидуальные показатели готовности к школе, полученные до начала обучения в школе у 11 первоклассников и их средняя успеваемость в конце учебного года.

Для решения этой задачи были проранжированы, во-первых, значения показателей школьной готовности, полученные при поступлении в школу, и, во-вторых, итоговые показатели успеваемости в конце года у этих же учащихся в среднем. Результаты представим в таблице:

Подставляем полученные данные в вышеприведенную формулу, и производим расчет. Получаем:

Для нахождения уровня значимости обращаемся к таблице «Критические значения коэффициента корреляции рангов Спирмена,» в которой приведены критические значения для коэффициентов ранговой корреляции.

Строим соответствующую «ось значимости»:

Полученный коэффициент корреляции совпал с критическим значением для уровня значимости в 1%. Следовательно, можно утверждать, что показатели школьной готовности и итоговые оценки первоклассников связаны положительной корреляционной зависимостью - иначе говоря, чем выше показатель школьной готовности, тем лучше учится первоклассник. В терминах статистических гипотез психолог должен отклонить нулевую (Н0) гипотезу о сходстве и принять альтернативную (Н1) о наличии различий, которая говорит о том, что связь между показателями школьной готовности и средней успеваемостью отлична от нуля.

Корреляция спирмена. Корреляционный анализ по методу спирмена. Ранги спирмена. Коэффициент корреляции Спирмена. Ранговая корреляция Спирмена

Коэффициент корреляции рангов, предложенный К. Спирменом, относится к непараметрическим показателям связи между переменными, измеренными в ранговой шкале. При расчете этого коэффициента не требуется никаких предположений о характере распределений признаков в генеральной совокупности. Этот коэффициент определяет степень тесноты связи порядковых признаков, которые в этом случае представляют собой ранги сравниваемых величин.

Величина коэффициента корреляции Спирмена также лежит в интервале +1 и -1. Он, как и коэффициент Пирсона, может быть положительным и отрицательным, характеризуя направленность связи между двумя признаками, измеренными в ранговой шкале.

В принципе число ранжируемых признаков (качеств, черт и т.п.) может быть любым, но сам процесс ранжирования большего, чем 20 числа признаков -- затруднителен. Возможно, что именно поэтому таблица критических значений рангового коэффициента корреляции рассчитана лишь для сорока ранжируемых признаков (n < 40, табл. 20 приложения 6).

Ранговый коэффициент корреляции Спирмена подсчитывается по формуле:

где n - количество ранжируемых признаков (показателей, испытуемых);

D - разность между рангами по двум переменным для каждого испытуемого;

Сумма квадратов разностей рангов.

Используя ранговый коэффициент корреляции, рассмотрим следующий пример.

Пример : Психолог выясняет, как связаны между собой индивидуальные показатели готовности к школе, полученные до начала обучения в школе у 11 первоклассников и их средняя успеваемость в конце учебного года.

Для решения этой задачи были проранжированы, во-первых, значения показателей школьной готовности, полученные при поступлении в школу, и, во-вторых, итоговые показатели успеваемости в конце года у этих же учащихся в среднем. Результаты представим в табл. 13.

Таблица 13

№ учащихся

Ранги показателей школьной готовности

Ранги среднегодовой успеваемости

Подставляем полученные данные в формулу и производим расчет. Получаем:

Для нахождения уровня значимости обращаемся к табл. 20 приложения 6, в которой приведены критические значения для коэффициентов ранговой корреляции.

Подчеркнем, что в табл. 20 приложения 6, как и в таблице для линейной корреляции Пирсона, все величины коэффициентов корреляции даны по абсолютной величине. Поэтому, знак коэффициента корреляции учитывается только при его интерпретации.

Нахождение уровней значимости в данной таблице осуществляется по числу n, т. е. по числу испытуемых. В нашем случае n = 11. Для этого числа находим :

0,61 для P 0,05

0,76 для P 0,01

Строим соответствующую ``ось значимости"":

Полученный коэффициент корреляции совпал с критическим значением для уровня значимости в 1%. Следовательно, можно утверждать, что показатели школьной готовности и итоговые оценки первоклассников связаны положительной корреляционной зависимостью - иначе говоря, чем выше показатель школьной готовности, тем лучше учится первоклассник. В терминах статистических гипотез психолог должен отклонить нулевую (Нгипотезу о сходстве и принять альтернативную (Но наличии различий, которая говорит о том, что связь между показателями школьной готовности и средней успеваемостью отлична от нуля.

Случай одинаковых (равных) рангов

При наличии одинаковых рангов формула расчета коэффициента линейной корреляции Спирмена будет несколько иной. В этом случае в формулу вычисления коэффициентов корреляции добавляются два новых члена, учитывающие одинаковые ранги. Они называются поправками на одинаковые ранги и добавляются в числитель расчетной формулы.

где n - число одинаковых рангов в первом столбце,

k - число одинаковых рангов во втором столбце.

Если имеется две группы одинаковых рангов, в каком-либо столбце то формула поправки несколько усложняется:

где n - число одинаковых рангов в первой группе ранжируемого столбца,

k - число одинаковых рангов в второй группе ранжируемого столбца. Модификация формулы в общем случае такова:

Пример : Психолог, используя тест умственного развития (ШТУР) проводит исследование интеллекта у 12 учащихся 9 класса. Одновременно с этим, но просит учителей литературы и математики провести ранжирование этих же учащихся по показателям умственного развития. Задача заключается в том, чтобы определить, как связаны между собой объективные показатели умственного развития (данные ШТУРа) и экспертные оценки учителей.

Экспериментальные данные этой задачи и дополнительные столбцы, необходимые для расчета коэффициента корреляции Спирмена, представим в виде табл. 14.

Таблица 14

№ учащихся

Ранги тестирования с помощью ШТУРа

Экспертные оценки учителей по математики

Экспертные оценки учителей по литературе

D (второго и третьего столбцов)

D (второго и четвертого столбцов)

(второго и третьего столбцов)

(второго и четвертого столбцов)

Поскольку при ранжировании использовались одинаковые ранги, то необходимо проверить правильность ранжирования во втором, третьем и четвертом столбцах таблицы. Суммирование в каждом из этих столбцов дает одинаковую сумму - 78.

Проверяем по расчетной формуле. Проверка дает:

В пятом и шестом столбцах таблицы приведены величины разности рангов между экспертными оценками психолога по тесту ШТУР для каждого ученика и величинами экспертных оценок учителей, соответственно по математике и литературе. Сумма величин разностей рангов должна быть равна нулю. Суммирование величин D в пятом и шестом столбцах дало искомый результат. Следовательно, вычитание рангов проведено правильно. Подобную проверку необходимо делать каждый раз при проведении сложных видов ранжирования.

Прежде, чем начать расчет по формуле необходимо рассчитать поправки на одинаковые ранги для второго, третьего и четвертого столбцов таблицы.

В нашем случае во втором столбце таблицы два одинаковых ранга, следовательно, по формуле величина поправки D1 будет:

В третьем столбце три одинаковых ранга, следовательно, по формуле величина поправки D2 будет:

В четвертом столбце таблицы две группы по три одинаковых ранга, следовательно, по формуле величина поправки D3 будет:

Прежде, чем преступить к решению задачи, напомним, что психолог выясняет два вопроса - как связаны величины рангов по тесту ШТУР с экспертными оценками по математике и литературе. Именно поэтому расчет проводится дважды.

Считаем первый ранговый коэффициент с учетом добавок по формуле. Получаем:

Подсчитаем без учета добавки:

Как видим, разница в величинах коэффициентов корреляции оказалась очень незначительной.

Считаем второй ранговый коэффициент с учетом добавок по формуле. Получаем:

Подсчитаем без учета добавки:

И опять, различия оказались очень незначительны. Поскольку число учащихся в обоих случаях одинаково, по табл. 20 приложения 6 находим критические значения при n = 12 сразу для обоих коэффициентов корреляции.

0,58 для P 0,05

0,73 для P 0,01

Откладываем первое значение на ``оси значимости"":

В первом случае полученный коэффициент ранговой корреляции находится в зоне значимости. Поэтому психолог должен отклонить нулевую Нгипотезу о сходстве коэффициента корреляции с нулем и принять альтернативную Но значимом отличии коэффициента корреляции от нуля. Иными словами, полученный результат говорит о том, что чем выше экспертные оценки учащихся по тесту ШТУР, тем выше их экспертные оценки по математике.

Откладываем второе значение на ``оси значимости"":

Во втором случае коэффициент ранговой корреляции находится в зоне неопределенности. Поэтому психолог может принять нулевую Нгипотезу о сходстве коэффициента корреляции с нулем и отклонить альтернативную Но значимом отличии коэффициента корреляции от нуля. В этом случае полученный результат говорит о том, что экспертные оценки учащихся по тесту ШТУР не связаны с экспертными оценками по литературе.

Для применения коэффициента корреляции Спирмена, необходимо соблюдать следующие условия:

1. Сравниваемые переменные должны быть получены в порядковой (ранговой) шкале, но могут быть измерены также в шкале интервалов и отношений.

2. Характер распределения коррелируемых величин не имеет значения.

3. Число варьирующих признаков в сравниваемых переменных X и Y должно быть одинаковым.

Таблицы для определения критических значений коэффициента корреляции Спирмена (табл. 20 приложение 6) рассчитаны от числа признаков равных n = 5 до n = 40 и при большем числе сравниваемых переменных следует использовать таблицу для пирсоновского коэффициента корреляции (табл. 19 приложение 6). Нахождение критических значений осуществляется при k = n.

Краткая теория

Ранговая корреляция – это метод корреляционного анализа, отражающий отношения переменных, упорядоченных по возрастанию их значения.

Ранги - это порядковые номера единиц совокупности в ранжированном ряду. Если проранжировать совокупность по двум признакам, связь между которыми изучается, то полное совпадение рангов означает максимально тесную прямую связь, а полная противоположность рангов - максимально тесную обратную связь. Ранжировать оба признака необходимо в одном и том же порядке: либо от меньших значений признака к большим, либо наоборот.

Для практических целей использование ранговой корреляции весьма полезно. Например, если установлена высокая ранговая корреляция между двумя качественными признаками изделий, то достаточно контролировать изделия только по одному из признаков, что удешевляет и ускоряет контроль.

Коэффициент корреляции рангов, предложенный К. Спирменом, относится к непараметрическим показателям связи между переменными, измеренными в ранговой шкале. При расчете этого коэффициента не требуется никаких предположений о характере распределений признаков в генеральной совокупности. Этот коэффициент определяет степень тесноты связи порядковых признаков, которые в этом случае представляют собой ранги сравниваемых величин.

Величина коэффициента корреляции Спирмена лежит в интервале +1 и -1. Он может быть положительным и отрицательным, характеризуя направленность связи между двумя признаками, измеренными в ранговой шкале.

Ранговый коэффициент корреляции Спирмена подсчитывается по формуле:

Разность между рангами по двум переменным

число сопоставляемых пар

Первым этапом расчета коэффициента ранговой корреляции является ранжирование рядов переменных. Процедура ранжирования начинается с расположения переменных по возрастанию их значений. Разным значениям присваиваются ранги, обозначаемые натуральными числами. Если встречается несколько равных по значению переменных, им присваивается усредненный ранг.

Преимущество коэффициента корреляции рангов Спирмена состоит в том, что ранжировать можно и по таким признакам, которые нельзя выразить численно: можно проранжировать кандидатов на занятие определенной должности по профессиональному уровню, по умению руководить коллективом, по личному обаянию и т. п. При экспертных оценках можно ранжировать оценки разных экспертов и найти их корреляции друг с другом, чтобы затем исключить из рассмотрения оценки эксперта, слабо коррелированные с оценками других экспертов. Коэффициент корреляции рангов Спирмена применяется для оценки устойчивости тенденции динамики. Недостатком коэффициента корреляции рангов является то, что одинаковым разностям рангов могут соответствовать совершенно отличные разности значений признаков (в случае количественных признаков). Поэтому для последних следует считать корреляцию рангов приближенной мерой тесноты связи, обладающей меньшей информативностью, чем коэффициент корреляции числовых значений признаков.

Пример решения задачи

Условие задачи

Опрос случайно выбранных 10 студентов, проживающих в общежитии университета, позволяет выявить зависимость между средним баллом по результатам предыдущей сессии и числом часов в неделю, затраченных студентом на самостоятельную подготовку.

Определите тесноту связи при помощи коэффициента ранговой корреляции Спирмена.

Если возникли сложности с решением задач, то сайт сайт оказывает онлайн помощь студентам по статистике с домашними контрольными или экзаменами.

Решение задачи

Рассчитаем коэффициент корреляции рангов.

Ранжирование Сравнение рангов Разность рангов 1 26 4.7 8 1 3.1 1 8 10 -2 4 2 22 4.4 10 2 3.6 2 7 9 -2 4 3 8 3.8 12 3 3.7 3 1 4 -3 9 4 12 3.7 15 4 3.8 4 3 3 0 0 5 15 4.2 17 5 3.9 5 4 7 -3 9 6 30 4.3 20 6 4 6 9 8 1 1 7 20 3.6 22 7 4.2 7 6 2 4 16 8 31 4 26 8 4.3 8 10 6 4 16 9 10 3.1 30 9 4.4 9 2 1 1 1 10 17 3.9 31 10 4.7 10 5 5 0 0 Сумма 60

Коэффициент ранговой корреляции Спирмена:

Подставляя числовые значения, получаем:

Вывод к задаче

Связь между средним баллом по результатам предыдущей сессии и числом часов в неделю, затраченных студентом на самостоятельную подготовку, умеренной тесноты.

Если сроки со сдачей контрольной работы поджимают, на сайте всегда можно заказать cрочное решение задач по статистике .

Средняя стоимость решения контрольной работы 700 - 1200 рублей (но не менее 300 руб. за весь заказ). На цену сильно влияет срочность решения (от суток до нескольких часов). Стоимость онлайн-помощи на экзамене/зачете - от 1000 руб. за решение билета.

Все вопросы по стоимости можете задать прямо в чат, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.

Примеры близких по теме задач

Коэффициент Фехнера
Приведена краткая теория и рассмотрен пример решения задачи на расчет коэффициента корреляции знаков Фехнера.

Коэффициенты взаимной сопряженности Чупрова и Пирсона
Страница содержит сведения по методам изучения взаимосвязей между качественными признаками с помощью коэффициентов взаимной сопряженности Чупрова и Пирсона.