§3. Стационарные точки и дифференциальное исчисление. Внеклассный урок - экстремум функции

    Стационарные точки функции. Необходимое условие локального экстремума функции

    Первое достаточное условие локального экстремума

    Второе и третье достаточные условия локального экстремума

    Наименьшее и наибольшее значения функции на сегменте

    Выпуклые функции и точки перегиба

1. Стационарные точки функции. Необходимое условие локального экстремума функции

Определение 1 . Пусть функция определена на
. Точка называется стационарной точкой функции
, если
дифференцирована в точке и
.

Теорема 1 (необходимое условие локального экстремума функции) . Пусть функция
определена на
и имеет в точке
локальный экстремум. Тогда выполняется одно из условий:


Таким образом, для того, чтобы найти точки, которые являются подозрительными на экстремум, надо найти стационарные точки функции и точки, в которых производная функции не существует, но которые принадлежат области определения функции.

Пример . Пусть
. Найти для нее точки, которые являются подозрительными на экстремум. Для решения поставленной задачи, в первую очередь, найдем область определения функции:
. Найдем теперь производную функции:

Точки, в которых производная не существует:
. Стационарные точки функции:

Поскольку и
, и
принадлежат области определения функции, то они обе будут подозрительными на экстремум. Но для того, чтобы сделать вывод, будет ли там действительно экстремум, надо применять достаточные условия экстремума.

2. Первое достаточное условие локального экстремума

Теорема 1 (первое достаточное условие локального экстремума) . Пусть функция
определена на
и дифференцирована на этом интервале везде за исключением, возможно, точки
, но в этой точке функция
является непрерывной. Если существуют такие правая и левая полуокрестности точки , в каждой из которых
сохраняет определенный знак, то

1) функция
имеет локальный экстремум в точке , если
принимает значения разных знаков в соответствующих полуокрестностях;

2) функция
не имеет локальный экстремум в точке , если справа и слева от точки
имеет одинаковый знак.

Доказательство . 1) Предположим, что в полуокрестности
производная
, а в

.

Таким образом в точке функция
имеет локальный экстремум, а именно - локальный максимум, что и нужно было доказать.

2) Предположим, что слева и справа от точки производная сохраняет свой знак, например,
. Тогда на
и
функция
строго монотонно возрастает, то есть:

Таким образом экстремума в точке функция
не имеет, что и нужно было доказать.

Замечание 1 . Если производная
при прохождении через точку меняет знак с «+» на «-», то в точке функция
имеет локальный максимум, а если знак меняется с «-» на «+», то локальный минимум.

Замечание 2 . Важным является условие непрерывности функции
в точке . Если это условие не выполняется, то теорема 1 может не иметь места.

Пример . Рассматривается функция (рис.1):

Эта функция определена на и непрерывна везде, кроме точки
, где она имеет устранимый разрыв. При прохождении через точку

меняет знак с «-» на «+», но локального минимума в этой точке функция не имеет, а имеет локальный максимум по определению. Действительно, около точки
можно построить такую окрестность, что для всех аргументов из этой окрестности значения функции будут меньше, чем значение
. Теорема 1 не сработала потому, что в точке
функция имела разрыв.

Замечание 3 . Первое достаточное условие локального экстремума не может быть использовано, когда производная функции
меняет свой знак в каждой левой и каждой правой полуокрестности точки .

Пример . Рассматривается функция:

Поскольку
, то
, а потому
, но
. Таким образом:

,

т.е. в точке
функция
имеет локальный минимум по определению. Посмотрим, сработает ли здесь первое достаточное условие локального экстремума.

Для
:

Для первого слагаемого правой части полученной формулы имеем:

,

а потому в малой окрестности точки
знак производной определяется знаком второго слагаемого, то есть:

,

а это означает, что в любой окрестности точки

будет принимать как положительные, так и отрицательные значения. Действительно, рассмотрим произвольную окрестность точки
:
. Когда

,

то

(рис.2), а меняет свой знак здесь бесконечно много раз. Таким образом, нельзя использовать в приведенном примере первое достаточное условие локального экстремума.

В предшествующих рассуждениях мы совсем не пользовались техническими приемами дифференциального исчисления.

Трудно не признать, что наши элементарные методы являются более простыми и более прямыми, чем методы анализа. Вообще, занимаясь той или иной научной проблемой, лучше исходить из ее индивидуальных особенностей, чем полагаться исключительно на общие методы, хотя, с другой стороны, общий принцип, уясняющий смысл применяемых специальных процедур, конечно, всегда должен играть руководящую роль. Таково именно значение методов дифференциального исчисления при рассмотрении экстремальных проблем. Наблюдаемое в современной науке стремление к общности представляет только одну сторону дела, так как то, что в математике является подлинно жизненным, без всякого сомнения обусловливается индивидуальными чертами рассматриваемых, проблем и применяемых методов.

В своем историческом развитии дифференциальное исчисление в весьма значительной степени испытало воздействие индивидуальных проблем, связанных с разысканием наибольших и наименьших значений величин. Связь между экстремальными проблемами и дифференциальным исчислением можно уяснить себе следующим образом. В главе VIII мы займемся обстоятельным изучением производной f"(x) от функции f(x) и ее геометрического смысла. Там мы увидим, что, говоря кратко, производная f"(x) есть наклон касательной к кривой y = f(x) в точке (х, y). Геометрически очевидно, что в точках максимума или минимума гладкой кривой y = f(x) касательная к кривой непременно должна быть горизонтальной, т. е. наклон должен равняться нулю. Таким образом мы получаем для точек экстремума условие f"(x) = 0 .

Чтобы отдать себе ясно отчет в том, что означает обращение в нуль производной f"(x), рассмотрим кривую, изображенную на рис. 191. Мы видим здесь пять точек А, В, С, D, ?, в которых касательная к кривой горизонтальна; обозначим соответствующие значения f(x) в этих точках через а, b, с, d, е. Наибольшее значение f(x) (в пределах области, изображенной на чертеже) достигается в точке D, наименьшее - в точке A. В точке В имеется максимум - в том смысле, что во всех точках некоторой окрестности точки В значение f(x) меньше, чем b, хотя в точках, близких к D, значение f(x) все же больше, чем b. По этой причине принято говорить, что в точке В имеется относительный максимум функции f(x), тогда как в точке D - абсолютный максимум. Точно так же в точке С имеет место относительный минимум, а в точке А - абсолютный минимум. Наконец, что касается точки Е, то в ней нет ни максимума, ни минимума, хотя в ней все же осуществляется равенство f"(x) = Q , Отсюда следует, что обращение в нуль производной f"(x) есть необходимое , но никак не достаточное условие для появления экстремума гладкой функции f(x); другими словами, во всякой точке, где имеется экстремум (абсолютный или относительный), непременно имеет место равенство f"(x) = 0 , но не во всякой точке, где f"(x) = 0 , обязан быть экстремум. Те точки, в которых производная f"(x) обращается в нуль, независимо от того, имеется ли в них экстремум, называются стационарными. Дальнейший анализ приводит к более или менее сложным условиям, касающимся высших производных функции f(x) и полностью характеризующим максимумы, минимумы и иные стационарные точки.

Определения:

Экстремумом называют максимальное или минимальное значение функции на заданном множестве.

Точка экстремума – это точка, в которой достигается максимальное или минимальное значение функции.

Точка максимума – это точка, в которой достигается максимальное значение функции.

Точка минимума – это точка, в которой достигается минимальное значение функции.

Пояснение.

На рисунке в окрестности точки х = 3 функция достигает максимального значения (то есть в окрестности именно этой точки нет точки выше). В окрестности х = 8 она опять же имеет максимальное значение (снова уточним: именно в этой окрестности нет точки выше). В этих точках возрастание сменяется убыванием. Они являются точками максимума:

x max = 3, x max = 8.

В окрестности точки х = 5 достигается минимальное значение функции (то есть в окрестности х=5 точки ниже нет). В этой точке убывание сменяется возрастанием. Она является точкой минимума:

Точки максимума и минимума являются точками экстремума функции , а значения функции в этих точках – ее экстремумами .

Критические и стационарные точки функции:

Необходимое условие экстремума:

Достаточное условие экстремума:

На отрезке функция y = f (x ) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка .

Алгоритм исследования непрерывной функции y = f (x ) на монотонность и экстремумы:

Критические точки – это точки в которых производная функции равна нулю или не существует. Если производная равна 0 то функция в этой точке принимает локальный минимум или максимум . На графике в таких точках функция имеет горизонтальную асимптоту, то есть касательная параллельна оси Ох .

Такие точки называют стационарными . Если видите на графике непрерывной функции «горб» или «яму» помните, что максимум или минимум достигается в критической точке. Рассмотрим для примера следующее задание.

Пример 1. Найти критические точки функции y=2x^3-3x^2+5 .
Решение. Алгоритм нахождения критических точек следующий:

Итак функция имеет две критические точки.

Далее, если нужно провести исследование функции то определяем знак производной слева и справа от критической точки. Если производная при переходе через критическую точку меняет знак с «-» на «+» , то функция принимает локальный минимум . Если с «+» на «-» должны локальный максимум .

Второй тип критических точек это нули знаменателя дробных и иррациональных функций

Функции с логарифмами и тригонометрические, которые не определены в этих точках


Третий тип критических точек имеют кусочно-непрерывные функции и модули.
Например любая модуль-функция имеет минимум или максимум в точке излома.

Например модуль y = | x -5 | в точке x = 5 имеет минимум (критическую точку).
Производная в ней не существует, а справа и слева принимает значение 1 и -1 соответственно.

Попробуйте определить критические точки функций

1)
2)
3)
4)
5)

Если в ответе у Вы получите значение
1) x=4;
2) x=-1;x=1;
3) x=9;
4) x=Pi*k;
5) x=1.
то Вы уже знаете как найти критические точки и сможете справиться с простой контрольной или тестами.

Процесс исследования функции на наличие стационарных точек а также их нахождения является одним из важных элементов при построении графика функции. Найти стационарные точки функции можно, обладая определенным набором математических знаний.

Вам понадобится

  • - функция, которую необходимо исследовать на наличие стационарных точек;
  • - определение стационарных точек: стационарные точки функции - это точки (значения аргумента), в которых производная функции первого порядка обращается в нуль.

Инструкция

  • Используя таблицу производных и формулы дифференцирования функций, необходимо найти производную функции. Этот шаг является наиболее сложным и ответственным в ходе выполнения задачи. Если допустить ошибку на данном этапе, дальнейшие вычисления не будут иметь смысла.
  • Проверьте, зависит ли производная функции от аргумента. Если найденная производная не зависит от аргумента, то есть является числом (к примеру, f"(x) = 5), то в таком случае функция не имеет стационарных точек. Такое решение возможно, только если исследуемая функция является линейной функцией первого порядка (к примеру, f(x) = 5x+1). Если производная функции зависит от аргумента, то приступите к последнему этапу.
  • Составьте уравнение f"(x)= 0 и решите его. Уравнение может не иметь решений - в таком случае у функции стационарных точек не имеется. Если решения у уравнения есть, то именно эти найденные значения аргумента и будут являться стационарными точками функции. На данном этапе следует провести проверку решения уравнения методом подстановки аргумента.