Сжатый углекислый газ. Углекислый газ, он же углекислота, он же двуокись углерода…. Углекислый газ в природе: естественные источники

Диоксид углерода (двуокись углерода, углекислый газ, CO 2) формируется путем взаимодействия двух элементов – кислорода и углерода. Диоксид углерода образуется при сжигании углеводородных соединений или угля, в результате ферментации жидкостей, а также в качестве продукта дыхания животных и человека. В атмосфере он содержится в небольших количествах. Растения поглощают двуокись углерода из атмосферы и превращают его в органические компоненты. При исчезновении этого газа из атмосферы на Земле практически не будет дождей и станет заметно прохладнее.

Свойства диоксида углерода

Диоксид углерода тяжелее воздуха. Он замерзает при температуре -78 °C. При замерзании из двуокиси углерода образуется снег. В виде раствора углекислый газ образует угольную кислоту. Благодаря некоторым свойствам диоксид углерода иногда называют «одеялом» Земли. Он с легкостью пропускает ультрафиолетовые лучи. Инфракрасные лучи излучаются с поверхности диоксида углерода в космическое пространство.

Углекислый газ выпускают в жидкой форме при низкой температуре, в жидкой форме при высоком давлении и в газообразной форме. Газообразную форму двуокиси углерода получают из отбросных газов при производстве спиртов, аммиака, а также в результате сжигания топлива. Газообразный диоксид углерода по свойствам представляет собой нетоксичный и невзрывоопасный газ, без запаха и цвета. В жидкой форме двуокись углерода – жидкость без цвета и запаха. При содержании более 5% углекислый газ накапливается в районе пола в слабо проветриваемых помещениях. Снижение объемной доли кислорода в воздухе может привести к кислородной недостаточности и удушью. Эмбриологи установили, что клеткам человека и животных двуокиси углерода необходимо около 7%, а кислорода – всего 2%. Двуокись углерода – транквилизатор нервной системы и прекрасное анестезирующее средство. Газ в организме человека участвует в синтезе аминокислот, оказывает сосудорасширяющее действие. Недостаток углекислого газа в крови приводит к спазму сосудов и гладкой мускулатуры всех органов, к увеличению секреции в носовых ходах, бронхах и к развитию полипов и аденоидов, к уплотнению мембран из-за отложения холестерина.

Получение диоксида углерода

Существует несколько способов получения диоксида углерода. В промышленности двуокись углерода получают из доломита, известняка – продуктов разложения природных карбонатов, а также из печных газов. Газовую смесь промывают раствором карбоната калия. Смесь поглощает двуокись углерода и превращается в гидрокарбонат. Раствор гидрокарбоната нагревают и он, разлагаясь, высвобождает углекислоту. При промышленном методе получения диоксид углерода закачивается в баллоны.

В лабораториях получение диоксида углерода основывается на взаимодействии гидрокарбонатов и карбонатов с кислотами.

Области применения диоксида углерода

В повседневной практике двуокись углерода используют достаточно часто. В пищевой индустрии углекислый газ используют в качестве разрыхлителя теста, а также в качестве консерванта. Его обозначают на упаковке продукта под кодом Е290. Свойства диоксида углерода также используют при производстве газированной воды.

Биохимики выяснили, что для повышения урожайности различных культур весьма эффективно удобрять воздух углекислым газом. Однако данный способ удобрения можно применять только в оранжереях. В сельском хозяйстве газ применяют для создания искусственного дождя. При нейтрализации щелочной среды двуокись углерода заменяет сильнодействующие минеральные кислоты. В овощехранилищах углекислый газ применяют для создания газовой среды.

В парфюмерной промышленности двуокись углерода применяют при изготовлении духов. В медицине углекислый газ используют для антисептического воздействия при проведении открытых операций.

При охлаждении углекислый газ превращается в «сухой лед». Сжиженный диоксид углерода расфасовывают в баллоны и отправляют потребителям. Углекислый газ в виде «сухого льда» используют для сохранения пищевых продуктов. Такой лед при нагревании испаряется без остатка.

Углекислый газ используют как активную среду при сварке проволокой. При сварке двуокись углерода разлагается на кислород и угарный газ. Кислород вступает во взаимодействие с жидким металлом и окисляет его.

В авиамоделировании двуокись углерода используется как источник энергии для двигателей. Двуокись углерода в баллончиках используется в пневматическом оружии.

В таблице представлены теплофизические свойства углекислого газа CO 2 в зависимости от температуры и давления. Свойства в таблице указаны при температуре от 273 до 1273 К и давлении от 1 до 100 атм.

Рассмотрим такое важное свойство углекислого газа, как .
Плотность углекислого газа равна 1,913 кг/м 3 при нормальных условиях (при н.у.). По данным таблицы видно, что плотность углекислого газа существенно зависит от температуры и давления — при росте давления плотность CO 2 значительно увеличивается, а при повышении температуры газа — снижается. Так, при нагревании на 1000 градусов плотность углекислого газа уменьшается в 4,7 раза.

Однако, при увеличении давления углекислого газа, его плотность начинает расти, причем значительно сильнее, чем снижается при нагреве. Например при давлении и температуре 0°С плотность углекислого газа вырастает уже до значения 20,46 кг/м 3 .

Необходимо отметить, что рост давления газа приводит к пропорциональному увеличению значения его плотности, то есть при 10 атм. удельный вес углекислого газа в 10 раз больше, чем при нормальном атмосферном давлении.

В таблице приведены следующие теплофизические свойства углекислого газа:

  • плотность углекислого газа в кг/м 3 ;
  • удельная теплоемкость, кДж/(кг·град);
  • , Вт/(м·град);
  • динамическая вязкость, Па·с;
  • температуропроводность, м 2 /с;
  • кинематическая вязкость, м 2 /с;
  • число Прандтля.

Примечание: будьте внимательны! Теплопроводность в таблице указана в степени 10 2 . Не забудьте разделить на 100!

Теплофизические свойства углекислого газа CO 2 при атмосферном давлении

В таблице даны теплофизические свойства углекислого газа CO 2 в зависимости от температуры (в интервале от -75 до 1500°С) при атмосферном давлении. Даны следующие теплофизические свойства углекислого газа:

  • , Па·с;
  • коэффициент теплопроводности, Вт/(м·град);
  • число Прандтля.

По данным таблицы видно, что с ростом температуры теплопроводность и динамическая вязкость углекислого газа также увеличиваются. Примечание: будьте внимательны! Теплопроводность в таблице указана в степени 10 2 . Не забудьте разделить на 100!

Теплопроводность углекислого газа CO 2 в зависимости от температуры и давления

теплопроводности углекислого газа CO 2 в интервале температуры от 220 до 1400 К и при давлении от 1 до 600 атм. Данные выше черты в таблице относятся к жидкому CO 2 .

Следует отметить, что теплопроводность сжиженного углекислого газа при увеличении его температуры снижается , а при увеличении давления — растет. Углекислый газ (в газовый фазе) становится более теплопроводным, как при увеличении температуры, так и при росте его давления.

Теплопроводность в таблице дана в размерности Вт/(м·град). Будьте внимательны! Теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000!

Теплопроводность углекислого газа CO 2 в критической области

В таблице представлены значения теплопроводности углекислого газа CO 2 в критической области в интервале температуры от 30 до 50°С и при давлении .
Примечание: будьте внимательны! Теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000! Теплопроводность в таблице указана в Вт/(м·град).

Теплопроводность диссоциированного углекислого газа CO 2 при высоких температурах

В таблице представлены значения теплопроводности диссоциированного углекислого газа CO 2 в интервале температуры от 1600 до 4000 К и при давлении от 0,01 до 100 атм. Будьте внимательны! Теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000!

В таблице представлены значения теплопроводности жидкого углекислого газа CO 2 на линии насыщения в зависимости от температуры.
Примечание: Будьте внимательны! Теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000!
Теплопроводность в таблице указана в Вт/(м·град).

Энциклопедичный YouTube

  • 1 / 5

    Углекислый газ образуется при гниении и горении органических веществ. Содержится в воздухе и минеральных источниках, выделяется при дыхании животных и растений. Растворим в воде (0,738 объёмов углекислого газа в одном объёме воды при 15 °С).

    Химические

    По химическим свойствам диоксид углерода относится к кислотным оксидам. При растворении в воде образует угольную кислоту . Реагирует со щёлочами с образованием карбонатов и гидрокарбонатов . Вступает в реакции электрофильного замещения (например, с фенолом) и нуклеофильного присоединения (например, с магнийорганическими соединениями).

    Оксид углерода(IV) не поддерживает горения . В нём горят только некоторые активные металлы :

    2 M g + C O 2 → 2 M g O + C {\displaystyle {\mathsf {2Mg+CO_{2}\uparrow \to 2MgO+C}}}

    Взаимодействие с оксидом активного металла:

    C a O + C O 2 → C a C O 3 {\displaystyle {\mathsf {CaO+CO_{2}\uparrow \to CaCO_{3}}}}

    При растворении в воде образует равновесную смесь раствора диоксида углерода и угольной кислоты , причём равновесие сильно сдвинуто в сторону разложения кислоты:

    C O 2 + H 2 O ⇄ H 2 C O 3 {\displaystyle {\mathsf {CO_{2}\uparrow +H_{2}O\rightleftarrows H_{2}CO_{3}}}}

    Реагирует со щёлочами с образованием карбонатов и гидрокарбонатов:

    C a (O H) 2 + C O 2 → C a C O 3 ↓ + H 2 O {\displaystyle {\mathsf {Ca(OH)_{2}+CO_{2}\uparrow \to CaCO_{3}\downarrow +H_{2}O}}} (качественная реакция на углекислый газ) K O H + C O 2 → K H C O 3 {\displaystyle {\mathsf {KOH+CO_{2}\uparrow \to KHCO_{3}}}}

    Биологические

    Организм человека выделяет приблизительно 1 кг углекислого газа в сутки .

    Этот углекислый газ переносится от тканей, где он образуется в качестве одного из конечных продуктов метаболизма , по венозной системе и затем выделяется с выдыхаемым воздухом через лёгкие . Таким образом, содержание углекислого газа в крови велико в венозной системе, уменьшается в капиллярной сети лёгких, и мало в артериальной крови. Содержание углекислого газа в пробе крови часто выражают в терминах парциального давления, то есть давления, которое бы имел содержащийся в пробе крови в данном количестве углекислый газ, если бы весь объём пробы крови занимал только он .

    Углекислый газ транспортируется в крови тремя различными способами (точное соотношение каждого из этих трёх способов транспортировки зависит от того, является ли кровь артериальной или венозной).

    Гемоглобин, основной кислород-транспортирующий белок эритроцитов крови, способен транспортировать как кислород, так и углекислый газ . Однако углекислый газ связывается с гемоглобином в ином месте, чем кислород. Он связывается с N-терминальными концами цепей глобина , а не с гемом . Однако благодаря аллостерическим эффектам, которые приводят к изменению конфигурации молекулы гемоглобина при связывании, связывание углекислого газа понижает способность кислорода к связыванию с ним же, при данном парциальном давлении кислорода, и наоборот - связывание кислорода с гемоглобином понижает способность углекислого газа к связыванию с ним же, при данном парциальном давлении углекислого газа. Помимо этого, способность гемоглобина к преимущественному связыванию с кислородом или с углекислым газом зависит также и от среды. Эти особенности очень важны для успешного захвата и транспорта кислорода из лёгких в ткани и его успешного высвобождения в тканях, а также для успешного захвата и транспорта углекислого газа из тканей в лёгкие и его высвобождения там.

    Углекислый газ является одним из важнейших медиаторов ауторегуляции кровотока. Он является мощным вазодилататором . Соответственно, если уровень углекислого газа в ткани или в крови повышается (например, вследствие интенсивного метаболизма - вызванного, скажем, физической нагрузкой, воспалением, повреждением тканей, или вследствие затруднения кровотока, ишемии ткани), то капилляры расширяются, что приводит к увеличению кровотока и соответственно к увеличению доставки к тканям кислорода и транспорта из тканей накопившейся углекислоты. Кроме того, углекислый газ в определённых концентрациях (повышенных, но ещё не достигающих токсических значений) оказывает положительное инотропное и хронотропное действие на миокард и повышает его чувствительность к адреналину , что приводит к увеличению силы и частоты сердечных сокращений, величины сердечного выброса и, как следствие, ударного и минутного объёма крови. Это также способствует коррекции тканевой гипоксии и гиперкапнии (повышенного уровня углекислоты).

    Ионы гидрокарбоната очень важны для регуляции pH крови и поддержания нормального кислотно-щелочного равновесия. Частота дыхания влияет на содержание углекислого газа в крови. Слабое или замедленное дыхание вызывает респираторный ацидоз , в то время как учащённое и чрезмерно глубокое дыхание приводит к гипервентиляции и развитию респираторного алкалоза .

    Кроме того, углекислый газ также важен в регуляции дыхания. Хотя наш организм требует кислорода для обеспечения метаболизма, низкое содержание кислорода в крови или в тканях обычно не стимулирует дыхание (вернее, стимулирующее влияние нехватки кислорода на дыхание слишком слабо и «включается» поздно, при очень низких уровнях кислорода в крови, при которых человек нередко уже теряет сознание). В норме дыхание стимулируется повышением уровня углекислого газа в крови. Дыхательный центр гораздо более чувствителен к повышению уровня углекислого газа, чем к нехватке кислорода. Как следствие этого, дыхание сильно разрежённым воздухом (с низким парциальным давлением кислорода) или газовой смесью, вообще не содержащей кислорода (например, 100 % азотом или 100 % закисью азота) может быстро привести к потере сознания без возникновения ощущения нехватки воздуха (поскольку уровень углекислоты в крови не повышается, ибо ничто не препятствует её выдыханию). Это особенно опасно для пилотов военных самолётов, летающих на больших высотах (в случае аварийной разгерметизации кабины пилоты могут быстро потерять сознание). Эта особенность системы регуляции дыхания также является причиной того, почему в самолётах стюардессы инструктируют пассажиров в случае разгерметизации салона самолёта в первую очередь надевать кислородную маску самим, прежде чем пытаться помочь кому-либо ещё - делая это, помогающий рискует быстро потерять сознание сам, причём даже не ощущая до последнего момента какого-либо дискомфорта и потребности в кислороде .

    Дыхательный центр человека пытается поддерживать парциальное давление углекислого газа в артериальной крови не выше 50 мм ртутного столба. При сознательной гипервентиляции содержание углекислого газа в артериальной крови может снизиться до 10-20 мм ртутного столба, при этом содержание кислорода в крови практически не изменится или увеличится незначительно, а потребность сделать очередной вдох уменьшится как следствие уменьшения стимулирующего влияния углекислого газа на активность дыхательного центра. Это является причиной того, почему после некоторого периода сознательной гипервентиляции легче задержать дыхание надолго, чем без предшествующей гипервентиляции. Такая сознательная гипервентиляция с последующей задержкой дыхания может привести к потере сознания до того, как человек ощутит потребность сделать вдох. В безопасной обстановке такая потеря сознания ничем особенным не грозит (потеряв сознание, человек потеряет и контроль над собой, перестанет задерживать дыхание и сделает вдох, дыхание, а вместе с ним и снабжение мозга кислородом восстановится, а затем восстановится и сознание). Однако в других ситуациях, например, перед нырянием, это может быть опасным (потеря сознания и потребность сделать вдох наступят на глубине, и в отсутствие сознательного контроля в дыхательные пути попадёт вода, что может привести к утоплению) [ ] . Именно поэтому гипервентиляция перед нырянием опасна и не рекомендуется.

    Получение

    • Также углекислый газ получают на установках разделения воздуха как побочный продукт получения чистого кислорода, азота и аргона .

    В лабораторных условиях небольшие количества получают взаимодействием карбонатов и гидрокарбонатов с кислотами, например мрамора , мела или соды с соляной кислотой , используя, например, аппарат Киппа .

    CaCO 3 + 2 HCl ⟶ CaCl 2 + H 2 O + CO 2 ⋅ {\displaystyle {\ce {CaCO3\ +2HCl->CaCl2\ +H2O\ +CO2\uparrow .}}} C + O 2 ⟶ CO 2 + 394 kJ ⋅ {\displaystyle {\ce {C + O2 -> CO2 ^ + \ 394 kJ.}}}

    Применение

    В пищевой промышленности углекислота используется как консервант и разрыхлитель , обозначается на упаковке кодом Е290 .

    Углекислый газ используется для газирования лимонада и газированной воды . Углекислый газ используется также в качестве защитной среды при сварке проволокой, но при высоких температурах происходит его распад с выделением кислорода. Выделяющийся кислород окисляет металл . В связи с этим приходится в сварочную проволоку вводить раскислители, такие как марганец и кремний . Другим следствием влияния кислорода, также связанного с окислением, является резкое снижение поверхностного натяжения, что приводит, среди прочего, к более интенсивному разбрызгиванию металла, чем при сварке в инертной среде.

    Хранение углекислоты в стальном баллоне в сжиженном состоянии выгоднее, чем в виде газа. Углекислота имеет сравнительно низкую критическую температуру +31 °С. В стандартный 40-литровый баллон заливают около 30 кг сжиженного углекислого газа, и при комнатной температуре в баллоне будет находиться жидкая фаза, а давление составит примерно 6 МПа (60 кгс/см²). Если температура будет выше +31 °С, то углекислота перейдёт в сверхкритическое состояние с давлением выше 7,36 МПа. Стандартное рабочее давление для обычного 40-литрового баллона составляет 15 МПа (150 кгс/см²), однако он должен безопасно выдерживать давление в 1,5 раза выше, то есть 22,5 МПа, - таким образом, работа с подобными баллонами может считаться вполне безопасной.

    Твёрдая углекислота - «сухой лёд» - используется в качестве хладагента в лабораторных исследованиях, в розничной торговле, при ремонте оборудования (например: охлаждение одной из сопрягаемых деталей при посадке внатяг) и т. д. Для сжижения углекислого газа и получения сухого льда применяются углекислотные установки .

    Методы регистрации

    Измерение парциального давления углекислого газа требуется в технологических процессах, в медицинских применениях - анализ дыхательных смесей при искусственной вентиляции лёгких и в замкнутых системах жизнеобеспечения. Анализ концентрации CO₂ в атмосфере используется для экологических и научных исследований, для изучения парникового эффекта . Углекислый газ регистрируют с помощью газоанализаторов основанных на принципе инфракрасной спектроскопии и других газоизмерительных систем . Медицинский газоанализатор для регистрации содержания углекислоты в выдыхаемом воздухе называется капнограф . Для измерения низких концентраций CO₂ (а также ) в технологических газах или в атмосферном воздухе можно использовать газохроматографический метод с метанатором и регистрацией на пламенно-ионизационном детекторе .

    Углекислый газ в природе

    Ежегодные колебания концентрации атмосферной углекислоты на планете определяются, главным образом, растительностью средних (40-70°) широт Северного полушария.

    Большое количество углекислоты растворено в океане.

    Углекислый газ составляет значительную часть атмосфер некоторых планет Солнечной системы : Венеры , Марса .

    Физиологическое действие

    Углекислый газ нетоксичен, но при вдыхании его повышенных концентраций в воздухе по воздействию на воздуходышащие живые организмы его относят к удушающим газам (англ.) русск. . По ГОСТу (ГОСТ 8050-85) углекислота относится к 4-му классу опасности.

    Незначительные повышения концентрации, вплоть до 2-4 %, в помещениях приводят к развитию у людей сонливости и слабости. Опасными для здоровья концентрациями считаются концентрации около 7-10 %, при которых развиваются симптомы удушья, проявляющиеся в виде головной боли, головокружения, расстройстве слуха и в потере сознания (симптомы, сходные с симптомами высотной болезни), эти симптомы развиваются, в зависимости от концентрации, в течение времени от нескольких минут до одного часа.

    При вдыхании воздуха с очень высокими концентрациями газа смерть наступает очень быстро от удушья, вызванного гипоксией .

    Несмотря на то, что даже концентрация 5-7 % CO₂ в воздухе несмертельна, но при концентрации 0,1 % (такое содержание углекислого газа иногда наблюдается в воздухе мегаполисов), люди начинают чувствовать слабость, сонливость. Это показывает, что даже при высоком уровне кислорода, большая концентрация CO₂ существенно влияет на самочувствие человека.

    Применение углекислого газа в сварочной области является очень распространенной. Это один из основных вариантов, которые применяются для различных видов соединения металла. Физические свойства углекислого газа определяют его как универсальную субстанцию для газовой сварки, соединения газовой и электродуговой и так далее. Это относительно недорогое сырье, которое используется здесь на протяжении многих лет. Есть более эффективные варианты, но именно углекислота применяется чаще всего. Она находит применение как для обучения, так и для выполнения самых простых процедур.

    Углекислота еще носит название диоксид углерода. Вещество не обладает запахом и бесцветно в обыкновенном состоянии. При нормальном атмосферном давлении, углекислота не состоит в жидком состоянии и из твердого сразу переходит в газообразное.

    Область применения углекислого газа

    Химическое вещество используется не только для сварки. Физические свойства углекислого газа позволяют применять его как разрыхлитель или консервант в пищевой промышленности. Во многих системах пожаротушения, в частности в ручных огнетушителях. Его применяют для обеспечения питания аквариумных растений. Практически все газированные напитки содержат углекислый газ.

    В сварочной сфере применение чистой углекислоты является не совсем безопасным для металла. Дело в том, что при воздействии высокой температуры он распадается и из него выделяется кислород. В свою очередь, кислород является опасным для сварочной ванны и чтобы ликвидировать его негативное воздействие, применяют разнообразные раскислители, такие как кремний и марганец.

    Применение углекислоты встречается еще и в баллонах для пневматических пистолетов и винтовок. Как и в сварочных баллонах, углекислота здесь хранится в сжиженном состоянии под давлением.

    Химическая формула

    Химические свойства углекислого газа, а также его другие характеристики, напрямую зависят от элементов, которые входят в состав формулы. Формула углекислого газа в химии имеет вид CO 2 . Это означает, что углекислота содержит в себе один атом углерода и два атома кислорода.

    Химические и физические свойства

    Рассмотрев, как обозначается химических газ в химии, стоит более внимательно рассмотреть его свойства. Физические свойства углекислого газа проявляются в различных параметрах. Плотность углекислого газа при стандартных атмосферных условиях составляет 1,98 кг/м 3 . Это делает его в 1,5 раза тяжелее, чем воздух в атмосфере. Диоксид углерода не имеет запаха и цвета. Если его подвергнуть сильному охлаждению, то он начинает кристаллизоваться в так называемый «сухой лед». Температура сублимации достигает -78 градусов Цельсия.

    Химические свойства углекислого газа определяют его к кислотным оксидам, так как он может образовывать угольную кислоту, когда его растворяют в воде. При взаимодействии с щелочами, вещество начинает образовывать гидрокарбонаты и карбонаты. С некоторыми веществами, такими как фенол, диоксид углерода вступает в реакцию электрофильного замещения. С магнийорганическими вещество вступает в реакцию нуклеофильного присоединения. Использование углекислоты в огнетушителях обусловлено тем, что она не поддерживает процесс горения. Использование в сварке обусловлено тем, что в веществе горят некоторые активные металлы.

    Преимущества

    • Использование углекислого газа является относительно недорогим, так как цена на данное вещество достаточно низкая, если сравнивать с другими газами;
    • Это очень распространенное вещество, найти которое можно во многих местах;
    • Углекислый газ удобен в хранении и не требует сверхсложных мер безопасности;
    • Газ хорошо справляется с теми обязанностями, для которых он предназначается.

    Недостатки

    • Во время использования на металле могут образовываться оксиды, которые выделяет вещество во время нагревания;
    • Для нормальной работы нужно использовать дополнительные расходные материалы, которые бы помогли ликвидировать негативное воздействие оксидов;
    • Существуют более эффективные газы, применяемые в сварочной сфере.

    Применение углекислого газа при сварке

    Данное вещество применяется в области сваривания металлических изделий в качестве . Он применяется как для автоматических, так и для . Зачастую его используют не в чистом виде а вместе с аргоном или кислородом в газовой смеси. В производственной сфере существует несколько вариантов снабжения постов. Среди них выделяют следующие методы:

    • Поставка из баллона. Это очень удобно, когда речь идет об относительно небольших объемах вещества. Это обеспечивает мобильность, так как не всегда имеется возможность создать трубопровод к посту.
    • Транспортная емкость для углекислоты. Это также отличный вариант для потребления вещества в небольших баллонах. Она обеспечивает поставку большего количества газа, чем в баллонах, но менее удобна в транспортировке.
    • Стационарный сосуд накопитель. Он применяется для тех, кто использует углекислоту в больших объемах. Их используют при отсутствии на предприятии автономной станции.
    • Автономная станция. Это наиболее широкий по объему метод поставки, так как может обслуживать пост практически для любых процедур, вне зависимости от объемов. Таким образом, пост получает вещество непосредственно с места его производства.

    Автономная станция представляет собой специальный цех на предприятии, где получают диоксид углерода. Он может работать как исключительно для собственных нужд, так и на поставку другим цехам и организациям. Для обеспечения рабочих точек предприятия, газ поставляет по трубопроводам. В то время, когда на предприятии имеется необходимость в запасании углекислоты, ее перемещают в специальные накопители.

    Меры безопасности

    Хранение и использование вещества является относительно безопасным. Но для того, чтобы исключить вероятности несчастных случаев, следует придерживаться основных правил:

    • Несмотря на то, что углекислота не отличается взрывоопасностью и токсичностью, если ее концентрация будет выше 5%, то человек будет чувствовать удушье и кислородную недостаточность. Не следует допускать утечки и хранения всего в закрытом не проветриваемом помещении.
    • Если понизить давление, то жидкая углекислота превращается в газообразное состояние. В это время ее температура может составлять -78 градусов Цельсия. Это вредно для слизистых оболочек организма. Также это приводит к обморожению кожи
    • Осмотр больших емкостей для хранения углекислоты следует проводить с использованием шлангового противогаза. Цистерна должна быть отогрета до температуры окружающей среды и быть хорошо проветренной.

    Заключение

    Физические свойства являются не единственным показателем, по которому подбирается газ для сварки. Совокупность всех параметров обеспечивает данному веществу уверенные позиции на современном рынке расходных материалов. Среди самых простых процедур это незаменимый газ, с которым сталкивался практически каждый профессиональный и начинающий сварщик.

    Без цвета и запаха. Важнейший регулятор кровообращения и дыхания.

    Не токсичен. Без него не было бы сдобных булочек и приятно колких газированных напитков.

    Из этой статьи вы узнаете, что такое углекислый газ и как он влияет на организм человека.

    Большинство из нас плохо помнят школьный курс физики и химии, но знают: газы невидимы и, как правило, неосязаемы, а потому коварны. Поэтому, прежде чем ответить на вопрос, вреден ли углекислый газ для организма, давайте вспомним, что он собой представляет.

    Одеяло Земли

    — двуокись углерода. Он же — углекислый газ, оксид углерода (IV) или угольный ангидрид. В нормальных условиях это бесцветный не имеющий запаха газ с кисловатым вкусом.

    В условиях атмосферного давления двуокись углерода имеет два агрегатных состояния: газообразное (углекислый газ тяжелее воздуха, плохо растворяется в воде) и твёрдое (при -78 ºС превращается в сухой лёд).

    Углекислый газ — один из главных составляющих окружающей среды. Он содержится в воздухе и подземных минеральных водах, выделяется при дыхании человека и животных, участвует в фотосинтезе растений.

    Двуокись углерода активно влияет на климат. Она регулирует теплообмен планеты: пропускает ультрафиолет и блокирует инфракрасное излучение. В связи с этим углекислый газ порой называют одеялом Земли.

    O2 — энергия. CO2 — искра

    Двуокись углерода сопровождает человека на протяжении всей жизни. Будучи естественным регулятором дыхания и кровообращения, углекислый газ является неотъемлемым компонентом обмена веществ.


    Делая вдох, человек наполняет лёгкие кислородом.

    При этом в альвеолах (специальных «пузырьках» лёгких) происходит двусторонний обмен: кислород переходит в кровь, а углекислый газ выделяется из неё.

    Человек выдыхает. CO2 — один из конечных продуктов метаболизма.

    Говоря образно, кислород — это энергия, а углекислый газ — искра, разжигающая её.

    Вдыхая около 30 литров кислорода в час, человек выделяет 20-25 литров углекислого газа.

    Углекислый газ не менее важен для организма, чем кислород. Он является физиологическим стимулятором дыхания: влияет на кору головного мозга и стимулирует дыхательный центр. Сигналом для очередного вдоха служит не недостаток кислорода, а избыток углекислого газа. Ведь обмен веществ в клетках и тканях непрерывен, и нужно постоянно удалять его конечные продукты.

    Кроме того, углекислый газ на секрецию гормонов, активность ферментов и скорость биохимических процессов.

    Равновесие газообмена

    Углекислый газ не токсичен, не взрывоопасен и абсолютно безвреден для людей. Однако для нормальной жизнедеятельности крайне важен баланс двуокиси углерода и кислорода. Недостаток и избыток углекислого газа в организме приводит к гипокапнии и гиперкапнии соответственно.

    Гипокапния — недостаток СО2 в крови. Возникает в результате глубокого учащённого дыхания, когда в организм поступает больше кислорода, чем нужно. Например, во время слишком интенсивных физических нагрузок. Последствия могут быть различными: от лёгкого головокружения до потери сознания.

    Гиперкапния — избыток СО2 в крови. Человек (вместе с кислородом, азотом, водяными парами и инертными газами) 0,04% углекислого газа, а выдыхает 4,4%. Если находиться в небольшом помещении с плохой вентиляцией, концентрация двуокиси углерода может превысить норму. Как следствие, может возникнуть головная боль, тошнота, сонливость. Но чаще всего гиперкапния сопутствует экстремальным ситуациям: неисправность дыхательного аппарата, задержка дыхания под водой и другим.

    Таким образом, вопреки мнению большинства людей, углекислый газ в количествах, предусмотренных природой, необходим для жизни и здоровья человека. Кроме того, он нашёл широкое промышленное применение и приносит людям немало практической пользы.

    Игристые пузырьки на службе поваров

    СО2 используется во многих сферах. Но, пожалуй, наиболее востребован углекислый газ в пищевой промышленности и кулинарии.

    Углекислый газ образуется в дрожжевом тесте под влиянием брожения. Именно его пузырьки разрыхляют тесто, делая его воздушным и увеличивая его объём.


    С помощью углекислого газа делают различные освежающие напитки: квас, минеральную воду и другие любимые детьми и взрослыми газировки.

    Эти напитки пользуются популярностью у миллионов потребителей во всём мире во многом из-за игристых пузырьков, которые так забавно лопаются в бокале и так приятно «колют» в носу.

    Может ли углекислый газ, содержащийся в газированных напитках, способствовать гиперкапнии или нанести любой другой вред здоровому организму? Конечно, нет!

    Во-первых, углекислый газ, который используется при приготовлении газированных напитков, специально подготовлен для применения в пищевой промышленности. В тех количествах, в которых он содержится в газировках, он абсолютно безвреден для организма здоровых людей.

    Во-вторых, большая часть углекислого газа улетучивается сразу после откупоривания бутылки. Оставшиеся пузырьки «испаряются» в процессе питья, оставляя после себя лишь характерное шипение. В итоге в организм попадает ничтожно малое количество углекислого газа.

    «Тогда почему врачи порой запрещают пить газированные напитки?» — спросите вы. По мнению кандидата медицинских наук, врача-гастроэнтеролога Алёны Александровны Тяжевой, это связано с тем, что существует ряд заболеваний желудочно-кишечного тракта, при которых предписывается специальная строгая диета. В список противопоказаний попадают не только напитки, содержащие газ, но и многие продукты питания.

    Здоровый же человек без проблем может включить в свой рацион умеренное количество газированных напитков и время от времени позволять себе стаканчик той же колы.

    Вывод

    Углекислый газ необходим для поддержания жизни как планеты, так и отдельно взятого организма. СО2 влияет на климат, являясь своеобразным одеялом. Без него невозможен метаболизм: с углекислым газом из организма выходят продукты обмена. А ещё это незаменимый компонент любимых всеми газированных напитков. Именно углекислый газ создаёт игривые пузырьки, щекочущие в носу. При этом для здорового человека он абсолютно безопасен.