Сравнение двух частотных распределений. Критерий хи-квадрат. Проверка простых гипотез критерием хи-квадрат Пирсона в MS EXCEL

Распределение "хи-квадрат" является одним из наиболее широко используемых в статистике для проверки статистических гипотез. На основе распределения "хи-квадрат" построен один из наиболее мощных критериев согласия – критерий "хи-квадрата" Пирсона.

Критерием согласия называют критерий проверки гипотезы о предполагаемом законе неизвестного распределения.

Критерий χ2 ("хи-квадрат") используется для проверки гипотезы различных распределений. В этом заключается его достоинство.

Расчетная формула критерия равна

где m и m’ - соответственно эмпирические и теоретические частоты

рассматриваемого распределения;

n - число степеней свободы.

Для проверки нам необходимо сравнивать эмпирические (наблюдаемые) и теоретические (вычисленные в предположении нормального распределения) частоты.

При полном совпадении эмпирических частот с частотами, вычисленными или ожидаемыми S (Э – Т) = 0 и критерий χ2 тоже будет равен нулю. Если же S (Э – Т) не равно нулю это укажет на несоответствие вычисленных частот эмпирическим частотам ряда. В таких случаях необходимо оценить значимость критерия χ2, который теоретически может изменяться от нуля до бесконечности. Это производится путем сравнения фактически полученной величины χ2ф с его критическим значением (χ2st).Нулевая гипотеза, т. е. предположение, что расхождение между эмпирическими и теоретическими или ожидаемыми частотами носит случайный характер, опровергается, если χ2ф больше или равно χ2st для принятого уровня значимости (a) и числа степеней свободы (n).

Распределение вероятных значений случайной величины χ2 непрерывно и ассиметрично. Оно зависит от числа степеней свободы (n) и приближается к нормальному распределению по мере увеличения числа наблюдений. Поэтому применение критерия χ2 к оценке дискретных распределений сопряжено с некоторыми погрешностями, которые сказываются на его величине, особенно на малочисленных выборках. Для получения более точных оценок выборка, распределяемая в вариационный ряд, должна иметь не менее 50 вариантов. Правильное применение критерия χ2 требует также, чтобы частоты вариантов в крайних классах не были бы меньше 5; если их меньше 5, то они объединяются с частотами соседних классов, чтобы в сумме составляли величину большую или равную 5. Соответственно объединению частот уменьшается и число классов (N). Число степеней свободы устанавливается по вторичному числу классов с учетом числа ограничений свободы вариации.



Так как точность определения критерия χ2 в значительной степени зависит от точности расчета теоретических частот (Т), для получения разности между эмпирическими и вычисленными частотами следует использовать неокругленные теоретические частоты.

В качестве примера возьмем исследование, опубликованное на сайте, который посвящен применению статистических методов в гуманитарных науках.

Критерий "Хи-квадрат" позволяет сравнивать распределения частот вне зависимости от того, распределены они нормально или нет.

Под частотой понимается количество появлений какого-либо события. Обычно, с частотой появления события имеют дело, когда переменные измерены в шкале наименований и другой их характеристики, кроме частоты подобрать невозможно или проблематично. Другими словами, когда переменная имеет качественные характеристики. Так же многие исследователи склонны переводить баллы теста в уровни (высокий, средний, низкий) и строить таблицы распределений баллов, чтобы узнать количество человек по этим уровням. Чтобы доказать, что в одном из уровней (в одной из категорий) количество человек действительно больше (меньше) так же используется коэффициент Хи-квадрат.

Разберем самый простой пример.

Среди младших подростков был проведён тест для выявления самооценки. Баллы теста были переведены в три уровня: высокий, средний, низкий. Частоты распределились следующим образом:

Высокий (В) 27 чел.

Средний (С) 12 чел.

Низкий (Н) 11 чел.

Очевидно, что детей с высокой самооценкой большинство, однако это нужно доказать статистически. Для этого используем критерий Хи-квадрат.

Наша задача проверить, отличаются ли полученные эмпирические данные от теоретически равновероятных. Для этого необходимо найти теоретические частоты. В нашем случае, теоретические частоты – это равновероятные частоты, которые находятся путём сложения всех частот и деления на количество категорий.

В нашем случае:

(В + С + Н)/3 = (27+12+11)/3 = 16,6

Формула для расчета критерия хи-квадрат:

χ2 = ∑(Э - Т)І / Т

Строим таблицу:

Находим сумму последнего столбца:

Теперь нужно найти критическое значение критерия по таблице критических значений (Таблица 1 в приложении). Для этого нам понадобится число степеней свободы (n).

n = (R - 1) * (C - 1)

где R – количество строк в таблице, C – количество столбцов.

В нашем случае только один столбец (имеются в виду исходные эмпирические частоты) и три строки (категории), поэтому формула изменяется – исключаем столбцы.

n = (R - 1) = 3-1 = 2

Для вероятности ошибки p≤0,05 и n = 2 критическое значение χ2 = 5,99.

Полученное эмпирическое значение больше критического – различия частот достоверны (χ2= 9,64; p≤0,05).

Как видим, расчет критерия очень прост и не занимает много времени. Практическая ценность критерия хи-квадрат огромна. Этот метод оказывается наиболее ценным при анализе ответов на вопросы анкет.


Разберем более сложный пример.

К примеру, психолог хочет узнать, действительно ли то, что учителя более предвзято относятся к мальчикам, чем к девочкам. Т.е. более склонны хвалить девочек. Для этого психологом были проанализированы характеристики учеников, написанные учителями, на предмет частоты встречаемости трех слов: "активный", "старательный", "дисциплинированный", синонимы слов так же подсчитывались. Данные о частоте встречаемости слов были занесены в таблицу:

Для обработки полученных данных используем критерий хи-квадрат.

Для этого построим таблицу распределения эмпирических частот, т.е. тех частот, которые мы наблюдаем:

Теоретически, мы ожидаем, что частоты распределятся равновероятно, т.е. частота распределится пропорционально между мальчиками и девочками. Построим таблицу теоретических частот. Для этого умножим сумму по строке на сумму по столбцу и разделим получившееся число на общую сумму (s).

Итоговая таблица для вычислений будет выглядеть так:

χ2 = ∑(Э - Т)І / Т

n = (R - 1), где R – количество строк в таблице.

В нашем случае хи-квадрат = 4,21; n = 2.

По таблице критических значений критерия находим: при n = 2 и уровне ошибки 0,05 критическое значение χ2 = 5,99.

Полученное значение меньше критического, а значит принимается нулевая гипотеза.

Вывод: учителя не придают значение полу ребенка при написании ему характеристики.


Заключение.

К. Пирсон внёс значительный вклад в развитие математической статистики (большое количество фундаментальных понятий). Основная философская позиция Пирсона формулируется следующим образом: понятия науки - искусственные конструкции, средства описания и упорядочивания чувственного опыта; правила связи их в научные предложения вычленяются грамматикой науки, которая и является, философией науки. Связать же разнородные понятия и явления позволяет универсальная дисциплина - прикладная статистика, хотя и она по Пирсону субъективна.

Многие построения К. Пирсона напрямую связаны или разрабатывались с использованием антропологических материалов. Им разработаны многочисленные способы нумерической классификации и статистические критерии, применяемые во всех областях науки.


Литература.

1. Боголюбов А. Н. Математики. Механики. Биографический справочник. - Киев: Наукова думка, 1983.

2. Колмогоров А. Н., Юшкевич А. П. (ред.). Математика XIX века. - М.: Наука. - Т. I.

3. 3. Боровков А.А. Математическая статистика. М.: Наука, 1994.

4. 8. Феллер В. Введение в теорию вероятностей и ее приложения. - М.: Мир, Т.2, 1984.

5. 9. Харман Г., Современный факторный анализ. - М.: Статистика, 1972.

В практике биологических исследований часто бывает необ­ходимо проверить ту или иную гипотезу, т. е. выяснить, насколь­ко полученный экспериментатором фактический материал под­тверждает теоретическое предположение, насколько анализиру­емые данные совпадают с теоретически ожидаемыми. Возника­ет задача статистической оценки разницы между фактическими данными и теоретическим ожиданием, установления того, в ка­ких случаях и с какой степенью вероятности можно считать эту разницу достоверной и, наоборот, когда ее следует считать не­существенной, незначимой, находящейся в пределах случайнос­ти. В последнем случае сохраняется гипотеза, на основе кото­рой рассчитаны теоретически ожидаемые данные или показа­тели. Таким вариационно-статистическим приемом проверки гипо­тезы служит метод хи-квадрат (χ 2). Этот показатель часто на­зывают «критерием соответствия» или «критерием согласия» Пирсона. С его помощью можно с той или иной вероятностью судить о степени соответствия эмпирически полученных данных теоретически ожидаемым.

С формальных позиций сравниваются два вариационных ряда, две совокупности: одна – эмпирическое распределение, другая представляет собой выборку с теми же параметрами (n , M , S и др.), что и эмпирическая, но ее частотное распределение построено в точном соответствии с выбранным теоретическим законом (нормальным, Пуассона, биномиальным и др.), которому предположительно подчиняется поведение изучаемой случайной величины.

В общем виде формула критерия соответствия может быть записана следующим образом:

где a – фактическая частота наблюдений,

A – теоретически ожидаемая частота для данного класса.

Нулевая гипотеза предполагает, что достоверных различий между сравниваемыми распределениями нет. Для оценки существенности этих различий следует обра­титься к специальной таблице критических значений хи-квад­рат (табл. 9П ) и, сравнив вычисленную величину χ 2 с табличной, решить, достоверно или не достоверно отклоня­ется эмпирическое распределение от теоретического. Тем самым гипотеза об отсутствии этих различий будет либо опровергнута, либо оставлена в силе. Если вычисленная величина χ 2 равна или превышает табличную χ ² (α , df ) , решают, что эмпирическое распределение от теоретического отличается достоверно. Тем самым гипотеза об отсутствии этих различий будет опровергнута. Если же χ ² < χ ² (α , df ) , нулевая гипотеза остается в силе. Обычно принято считать допустимым уро­вень значимости α = 0.05, т. к. в этом случае остается только 5% шансов, что нулевая гипотеза правильна и, следовательно, есть достаточно оснований (95%), чтобы от нее отказаться.


Определенную проблему составляет правильное определение числа степеней свободы (df ), для которых из таблицы берут значения критерия. Для определения числа степеней свободы из общего числа классов k нужно вычесть число ограничений (т. е. число параметров, использованных для расчета теоретических частот).

В зависимости от типа распределения изучаемого признака формула для расчета числа степеней свободы будет меняться. Для альтернативного распределения (k = 2) в расчетах участвует только один параметр (объем выборки), следовательно, число степеней свободы составляет df = k −1=2−1=1. Для полиномиального распределения формула аналогична: df = k −1. Для проверки соответствия вариационного ряда распределению Пуассона используются уже два параметра – объем выборки и среднее значение (числен­но совпадающее с дисперсией); число степеней свободы df = k −2. При проверке соответ­ствия эмпирического распределения вариант нормальному или биномиальному закону число степеней свободы берется как число фактических классов минус три условия построения рядов – объем выборки, сред­няя и дисперсия, df = k −3. Сразу стоит отметить, что критерий χ² работает только для выборок объемом не менее 25 вариант , а частоты отдельных классов должны быть не ниже 4 .

Вначале проиллюстрируем применение критерия хи-квадрат на примере анали­за альтернативной изменчивости . В одном из опытов по изуче­нию наследственности у томатов было обнаружено 3629 крас­ных и 1176 желтых плодов. Теоретическое соотношение частот при расщеплении признаков во втором гибридном поколении должно быть 3:1 (75% к 25%). Выполняется ли оно? Иными словами, взята ли данная выборка из той генеральной совокупности, в которой соотношение частот 3:1 или 0.75:0.25?

Сформируем таблицу (табл. 4), заполнив значениями эмпирических частот и результатами расчета теоретических частот по формуле:

А = n∙p,

где p – теоретические частости (доли вариант данного типа),

n – объем выборки.

Например, A 2 = n∙p 2 = 4805∙0.25 = 1201.25 ≈ 1201.

Хи-квадрат Пирсона - это наиболее простой критерий проверки значимости связи между двумя категоризованными переменными. Критерий Пирсона основывается на том, что в двувходовой таблице ожидаемые частоты при гипотезе "между переменными нет зависимости" можно вычислить непосредственно. Представьте, что 20 мужчин и 20 женщин опрошены относительно выбора газированной воды (марка A или марка B ). Если между предпочтением и полом нет связи, то естественно ожидать равного выбора марки A и марки B для каждого пола.

Значение статистики хи-квадрат и ее уровень значимости зависит от общего числа наблюдений и количества ячеек в таблице. В соответствии с принципами, обсуждаемыми в разделе , относительно малые отклонения наблюдаемых частот от ожидаемых будет доказывать значимость, если число наблюдений велико.

Имеется только одно существенное ограничение использования критерия хи-квадрат (кроме очевидного предположения о случайном выборе наблюдений), которое состоит в том, что ожидаемые частоты не должны быть очень малы. Это связано с тем, что критерий хи-квадрат по своей природе проверяет вероятности в каждой ячейке; и если ожидаемые частоты в ячейках, становятся, маленькими, например, меньше 5, то эти вероятности нельзя оценить с достаточной точностью с помощью имеющихся частот. Дальнейшие обсуждения см. в работах Everitt (1977), Hays (1988) или Kendall and Stuart (1979).

Критерий хи-квадрат (метод максимального правдоподобия). Максимум правдоподобия хи-квадрат предназначен для проверки той же самой гипотезы относительно связей в таблицах сопряженности, что и критерий хи-квадрат Пирсона. Однако его вычисление основано на методе максимального правдоподобия. На практике статистика МП хи-квадрат очень близка по величине к обычной статистике Пирсона хи-квадрат . Подробнее об этой статистике можно прочитать в работах Bishop, Fienberg, and Holland (1975) или Fienberg (1977). В разделе Логлинейный анализ эта статистика обсуждается подробнее.

Поправка Йетса. Аппроксимация статистики хи-квадрат для таблиц 2x2 с малыми числом наблюдений в ячейках может быть улучшена уменьшением абсолютного значения разностей между ожидаемыми и наблюдаемыми частотами на величину 0.5 перед возведением в квадрат (так называемая поправка Йетса ). Поправка Йетса, делающая оценку более умеренной, обычно применяется в тех случаях, когда таблицы содержат только малые частоты, например, когда некоторые ожидаемые частоты становятся меньше 10 (дальнейшее обсуждение см. в Conover, 1974; Everitt, 1977; Hays, 1988; Kendall and Stuart, 1979 и Mantel, 1974).

Точный критерий Фишера. Этот критерий применим только для таблиц 2x2. Критерий основан на следующем рассуждении. Даны маргинальные частоты в таблице, предположим, что обе табулированные переменные независимы. Зададимся вопросом: какова вероятность получения наблюдаемых в таблице частот, исходя из заданных маргинальных? Оказывается, эта вероятность вычисляется точно подсчетом всех таблиц, которые можно построить, исходя из маргинальных. Таким образом, критерий Фишера вычисляет точную вероятность появления наблюдаемых частот при нулевой гипотезе (отсутствие связи между табулированными переменными). В таблице результатов приводятся как односторонние, так и двусторонние уровни.

Хи-квадрат Макнемара. Этот критерий применяется, когда частоты в таблице 2x2 представляют зависимые выборки. Например, наблюдения одних и тех же индивидуумов до и после эксперимента. В частности, вы можете подсчитывать число студентов, имеющих минимальные успехи по математике в начале и в конце семестра или предпочтение одних и тех же респондентов до и после рекламы. Вычисляются два значения хи-квадрат : A/D и B/C . A/D хи-квадрат проверяет гипотезу о том, что частоты в ячейках A и D (верхняя левая, нижняя правая) одинаковы. B/C хи-квадрат проверяет гипотезу о равенстве частот в ячейках B и C (верхняя правая, нижняя левая).

Коэффициент Фи. Фи-квадрат представляет собой меру связи между двумя переменными в таблице 2x2. Его значения изменяются от 0 (нет зависимости между переменными; хи-квадрат = 0.0 ) до 1 (абсолютная зависимость между двумя факторами в таблице). Подробности см. в Castellan and Siegel (1988, стр. 232).

Тетрахорическая корреляция. Эта статистика вычисляется (и применяется) только для таблиц сопряженности 2x2. Если таблица 2x2 может рассматриваться как результат (искусственного) разбиения значений двух непрерывных переменных на два класса, то коэффициент тетрахорической корреляции позволяет оценить зависимость между двумя этими переменными.

Коэффициент сопряженности. Коэффициент сопряженности представляет собой основанную на статистике хи-квадрат меру связи признаков в таблице сопряженности (предложенную Пирсоном). Преимущество этого коэффициента перед обычной статистикой хи-квадрат в том, что он легче интерпретируется, т.к. диапазон его изменения находится в интервале от 0 до 1 (где 0 соответствует случаю независимости признаков в таблице, а увеличение коэффициента показывает увеличение степени связи). Недостаток коэффициента сопряженности в том, что его максимальное значение "зависит" от размера таблицы. Этот коэффициент может достигать значения 1 только, если число классов не ограничено (см. Siegel, 1956, стр. 201).

Интерпретация мер связи. Существенный недостаток мер связи (рассмотренных выше) связан с трудностью их интерпретации в обычных терминах вероятности или "доли объясненной вариации", как в случае коэффициента корреляции r Пирсона (см. Корреляции). Поэтому не существует одной общепринятой меры или коэффициента связи.

Статистики, основанные на рангах. Во многих задачах, возникающих на практике, мы имеем измерения лишь в порядковой шкале (см. Элементарные понятия статистики ). Особенно это относится к измерениям в области психологии, социологии и других дисциплинах, связанных с изучением человека. Предположим, вы опросили некоторое множество респондентов с целью выяснения их отношение к некоторым видам спорта. Вы представляете измерения в шкале со следующими позициями: (1) всегда , (2) обычно , (3) иногда и (4) никогда . Очевидно, что ответ иногда интересуюсь показывает меньший интерес респондента, чем ответ обычно интересуюсь и т.д. Таким образом, можно упорядочить (ранжировать) степень интереса респондентов. Это типичный пример порядковой шкалы. Для переменных, измеренных в порядковой шкале, имеются свои типы корреляции, позволяющие оценить зависимости.

R Спирмена. Статистику R Спирмена можно интерпретировать так же, как и корреляцию Пирсона (r Пирсона) в терминах объясненной доли дисперсии (имея, однако, в виду, что статистика Спирмена вычислена по рангам). Предполагается, что переменные измерены как минимум в порядковой шкале. Всестороннее обсуждение ранговой корреляции Спирмена, ее мощности и эффективности можно найти, например, в книгах Gibbons (1985), Hays (1981), McNemar (1969), Siegel (1956), Siegel and Castellan (1988), Kendall (1948), Olds (1949) и Hotelling and Pabst (1936).

Тау Кендалла. Статистика тау Кендалла эквивалентна R Спирмена при выполнении некоторых основных предположений. Также эквивалентны их мощности. Однако обычно значения R Спирмена и тау Кендалла различны, потому что они отличаются как своей внутренней логикой, так и способом вычисления. В работе Siegel and Castellan (1988) авторы выразили соотношение между этими двумя статистиками следующим неравенством:

1 < = 3 * Тау Кендалла - 2 * R Спирмена < = 1

Более важно то, что статистики Кендалла тау и Спирмена R имеют различную интерпретацию: в то время как статистика R Спирмена может рассматриваться как прямой аналог статистики r Пирсона, вычисленный по рангам, статистика Кендалла тау скорее основана на вероятности . Более точно, проверяется, что имеется различие между вероятностью того, что наблюдаемые данные расположены в том же самом порядке для двух величин и вероятностью того, что они расположены в другом порядке. Kendall (1948, 1975), Everitt (1977), и Siegel and Castellan (1988) очень подробно обсуждают тау Кендалла. Обычно вычисляется два варианта статистики тау Кендалла: tau b и tau c . Эти меры различаются только способом обработки совпадающих рангов. В большинстве случаев их значения довольно похожи. Если возникают различия, то, по-видимому, самый безопасный способ - рассматривать наименьшее из двух значений.

Коэффициент d Соммера: d(X|Y), d(Y|X). Статистика d Соммера представляет собой несимметричную меру связи между двумя переменными. Эта статистика близка к tau b (см. Siegel and Castellan, 1988, стр. 303-310).

Гамма-статистика. Если в данных имеется много совпадающих значений, статистика гамма предпочтительнее R Спирмена или тау Кендалла. С точки зрения основных предположений, статистика гамма эквивалентна статистике R Спирмена или тау Кендалла. Ее интерпретация и вычисления более похожи на статистику тау Кендалла, чем на статистику R Спирмена. Говоря кратко, гамма представляет собой также вероятность ; точнее, разность между вероятностью того, что ранговый порядок двух переменных совпадает, минус вероятность того, что он не совпадает, деленную на единицу минус вероятность совпадений. Таким образом, статистика гамма в основном эквивалентна тау Кендалла, за исключением того, что совпадения явно учитываются в нормировке. Подробное обсуждение статистики гамма можно найти у Goodman and Kruskal (1954, 1959, 1963, 1972), Siegel (1956) и Siegel and Castellan (1988).

Коэффициенты неопределенности. Эти коэффициенты измеряют информационную связь между факторами (строками и столбцами таблицы). Понятие информационной зависимости берет начало в теоретико-информационном подходе к анализу таблиц частот, можно обратиться к соответствующим руководствам для разъяснения этого вопроса (см. Kullback, 1959; Ku and Kullback, 1968; Ku, Varner, and Kullback, 1971; см. также Bishop, Fienberg, and Holland, 1975, стр. 344-348). Статистика S (Y,X ) является симметричной и измеряет количество информации в переменной Y относительно переменной X или в переменной X относительно переменной Y . Статистики S(X|Y) и S(Y|X) выражают направленную зависимость.

Многомерные отклики и дихотомии. Переменные типа многомерных откликов и многомерных дихотомий возникают в ситуациях, когда исследователя интересуют не только "простые" частоты событий, но также некоторые (часто неструктурированные) качественные свойства этих событий. Природу многомерных переменных (факторов) лучше всего понять на примерах.

  • · Многомерные отклики
  • · Многомерные дихотомии
  • · Кросстабуляция многомерных откликов и дихотомий
  • · Парная кросстабуляция переменных с многомерными откликами
  • · Заключительный комментарий

Многомерные отклики. Представьте, что в процессе большого маркетингового исследования, вы попросили покупателей назвать 3 лучших, с их точки зрения, безалкогольных напитка. Обычный вопрос может выглядеть следующим образом.

До конца XIX века нормальное распределение считалась всеобщим законом вариации данных. Однако К. Пирсон заметил, что эмпирические частоты могут сильно отличаться от нормального распределения. Встал вопрос, как это доказать. Требовалось не только графическое сопоставление, которое имеет субъективный характер, но и строгое количественное обоснование.

Так был изобретен критерий χ 2 (хи-квадрат), который проверяет значимость расхождения эмпирических (наблюдаемых) и теоретических (ожидаемых) частот. Это произошло в далеком 1900 году, однако критерий и сегодня на ходу. Более того, его приспособили для решения широкого круга задач. Прежде всего, это анализ номинальных данных, т.е. таких, которые выражаются не количеством, а принадлежностью к какой-то категории. Например, класс автомобиля, пол участника эксперимента, вид растения и т.д. К таким данным нельзя применять математические операции вроде сложения и умножения, для них можно только подсчитать частоты.

Наблюдаемые частоты обозначим О (Observed) , ожидаемые – E (Expected) . В качестве примера возьмем результат 60-кратного бросания игральной кости. Если она симметрична и однородна, вероятность выпадения любой стороны равна 1/6 и, следовательно, ожидаемое количество выпадения каждой из сторон равна 10 (1/6∙60). Наблюдаемые и ожидаемые частоты запишем в таблицу и нарисуем гистограмму.

Нулевая гипотеза заключается в том, что частоты согласованы, то есть фактические данные не противоречат ожидаемым. Альтернативная гипотеза – отклонения в частотах выходят за рамки случайных колебаний, то есть расхождения статистически значимы. Чтобы сделать строгий вывод, нам потребуется.

  1. Обобщающая мера расхождения между наблюдаемыми и ожидаемыми частотами.
  2. Распределение этой меры при справедливости гипотезы о том, что различий нет.

Начнем с расстояния между частотами. Если взять просто разницу О — E , то такая мера будет зависеть от масштаба данных (частот). Например, 20 — 5 =15 и 1020 – 1005 = 15. В обоих случаях разница составляет 15. Но в первом случае ожидаемые частоты в 3 раза меньше наблюдаемых, а во втором случае – лишь на 1,5%. Нужна относительная мера, не зависящая от масштаба.

Обратим внимание на следующие факты. В общем случае количество градаций, по которым измеряются частоты, может быть гораздо больше, поэтому вероятность того, что отдельно взятое наблюдение попадет в ту или иную категорию, довольно мала. Раз так, то, распределение такой случайной величины будет подчинятся закону редких событий, известному под названием закон Пуассона . В законе Пуассона, как известно, значение математического ожидания и дисперсии совпадают (параметр λ ). Значит, ожидаемая частота для некоторой категории номинальной переменной E i будет являться одновременное и ее дисперсией. Далее, закон Пуассона при большом количестве наблюдений стремится к нормальному. Соединяя эти два факта, получаем, что, если гипотеза о согласии наблюдаемых и ожидаемых частот верна, то, при большом количестве наблюдений , выражение

Будет иметь .

Важно помнить, что нормальность будет проявляться только при достаточно больших частотах. В статистике принято считать, что общее количество наблюдений (сумма частот) должна быть не менее 50 и ожидаемая частота в каждой градации должна быть не менее 5. Только в этом случае величина, показанная выше, будет иметь стандартное нормальное распределение. Предположим, что это условие выполнено.

У стандартного нормального распределения почти все значение находятся в пределах ±3 (правило трех сигм). Таким образом, мы получили относительную разность в частотах для одной градации. Нам нужна обобщающая мера. Просто сложить все отклонения нельзя – получим 0 (догадайтесь почему). Пирсон предложил сложить квадраты этих отклонений.

Это и есть знамений критерий χ 2 Пирсона . Если частоты действительно соответствуют ожидаемым, то значение критерия будет относительно не большим (т.к. большинство отклонений находится около нуля). Но если критерий оказывается большим, то это свидетельствует в пользу существенных различий между частотами.

«Большим» критерий становится тогда, когда появление такого или еще большего значения становится маловероятным. И чтобы рассчитать такую вероятность, необходимо знать распределение критерия при многократном повторении эксперимента, когда гипотеза о согласии частот верна.

Как нетрудно заметить, величина хи-квадрат также зависит от количества слагаемых. Чем их больше, тем большее значение должно быть у критерия, ведь каждое слагаемое внесет свой вклад в общую сумму. Следовательно, для каждого количества независимых слагаемых, будет собственное распределение. Получается, что χ 2 – это целое семейство распределений.

И здесь мы подошли к одному щекотливому моменту. Что такое число независимых слагаемых? Вроде как любое слагаемое (т.е. отклонение) независимо. К. Пирсон тоже так думал, но оказался неправ. На самом деле число независимых слагаемых будет на один меньше, чем количество градаций номинальной переменной n . Почему? Потому что, если мы имеем выборку, по которой уже посчитана сумма частот, то одну из частот всегда можно определить, как разность общего количества и суммой всех остальных. Отсюда и вариация будет несколько меньше. Данный факт Рональд Фишер заметил лет через 20 после разработки Пирсоном своего критерия. Даже таблицы пришлось переделывать.

По этому поводу Фишер ввел в статистику новое понятие – степень свободы (degrees of freedom), которое и представляет собой количество независимых слагаемых в сумме. Понятие степеней свободы имеет математическое объяснение и проявляется только в распределениях, связанных с нормальным (Стьюдента, Фишера-Снедекора и сам хи-квадрат).

Чтобы лучше уловить смысл степеней свободы, обратимся к физическому аналогу. Представим точку, свободно движущуюся в пространстве. Она имеет 3 степени свободы, т.к. может перемещаться в любом направлении трехмерного пространства. Если точка движется по какой-либо поверхности, то у нее уже две степени свободы (вперед-назад, вправо-влево), хотя и продолжает находиться в трехмерном пространстве. Точка, перемещающаяся по пружине, снова находится в трехмерном пространстве, но имеет лишь одну степень свободы, т.к. может двигаться либо вперед, либо назад. Как видно, пространство, где находится объект, не всегда соответствует реальной свободе перемещения.

Примерно также распределение статистического критерия может зависеть от меньшего количества элементов, чем нужно слагаемых для его расчета. В общем случае количество степеней свободы меньше наблюдений на число имеющихся зависимостей. Это чистая математика, никакой магии.

Таким образом, распределение χ 2 – это семейство распределений, каждое из которых зависит от параметра степеней свободы. А формальное определение критерия хи-квадрат следующее. Распределение χ 2 (хи-квадрат) с k степенями свободы - это распределение суммы квадратов k независимых стандартных нормальных случайных величин.

Далее можно было бы перейти к самой формуле, по которой вычисляется функция распределения хи-квадрат, но, к счастью, все давно подсчитано за нас. Чтобы получить интересующую вероятность, можно воспользоваться либо соответствующей статистической таблицей, либо готовой функцией в специализированном ПО, которая есть даже в Excel.

Интересно посмотреть, как меняется форма распределения хи-квадрат в зависимости от количества степеней свободы.

С увеличением степеней свободы распределение хи-квадрат стремится к нормальному. Это объясняется действием центральной предельной теоремы, согласно которой сумма большого количества независимых случайных величин имеет нормальное распределение. Про квадраты там ничего не сказано)).

Проверка гипотезы по критерию хи-квадрат

Вот мы и подошли к проверке гипотез по методу хи-квадрат. В целом техника остается . Выдвигается нулевая гипотеза о том, что наблюдаемые частоты соответствуют ожидаемым (т.е. между ними нет разницы, т.к. они взяты из той же генеральной совокупности). Если этот так, то разброс будет относительно небольшим, в пределах случайных колебаний. Меру разброса определяют по критерию хи-квадрат. Далее либо сам критерий сравнивают с критическим значением (для соответствующего уровня значимости и степеней свободы), либо, что более правильно, рассчитывают наблюдаемый p-level, т.е. вероятность получить такое или еще больше значение критерия при справедливости нулевой гипотезы.

Т.к. нас интересует согласие частот, то отклонение гипотезы произойдет, когда критерий окажется больше критического уровня. Т.е. критерий является односторонним. Однако иногда (иногда) требуется проверить левостороннюю гипотезу. Например, когда эмпирические данные уж оооочень сильно похожи на теоретические. Тогда критерий может попасть в маловероятную область, но уже слева. Дело в том, что в естественных условиях, маловероятно получить частоты, практически совпадающие с теоретическими. Всегда есть некоторая случайность, которая дает погрешность. А вот если такой погрешности нет, то, возможно, данные были сфальсифицированы. Но все же обычно проверяют правостороннюю гипотезу.

Вернемся к задаче с игральным кубиком. Рассчитаем по имеющимся данным значение критерия хи-квадрат.

Теперь найдем табличное значение критерия при 5-ти степенях свободы (k ) и уровне значимости 0,05 (α ).

То есть χ 2 0,05; 5 = 11,1.

Сравним фактическое и табличное значение. 3,4 (χ 2 ) < 11,1 (χ 2 0,05; 5 ). Расчетный критерий оказался меньшим, значит гипотеза о равенстве (согласии) частот не отклоняется. На рисунке ситуация выглядит вот так.

Если бы расчетное значение попало в критическую область, то нулевая гипотеза была бы отклонена.

Более правильным будет рассчитать еще и p-level. Для этого нужно в таблице найти ближайшее значение для заданного количества степеней свободы и посмотреть соответствующий ему уровень значимости. Но это прошлый век. Воспользуемся ПЭВМ, в частности MS Excel. В эксель есть несколько функций, связанных с хи-квадрат.

Ниже их краткое описание.

ХИ2.ОБР – критическое значение критерия при заданной вероятности слева (как в статистических таблицах)

ХИ2.ОБР.ПХ – критическое значение критерия при заданной вероятности справа. Функция по сути дублирует предыдущую. Но здесь можно сразу указывать уровень α , а не вычитать его из 1. Это более удобно, т.к. в большинстве случаев нужен именно правый хвост распределения.

ХИ2.РАСП – p-level слева (можно рассчитать плотность).

ХИ2.РАСП.ПХ – p-level справа.

ХИ2.ТЕСТ – по двум заданным диапазонам частот сразу проводит тест хи-квадрат. Количество степеней свободы берется на одну меньше, чем количество частот в столбце (так и должно быть), возвращая значение p-level.

Давайте пока рассчитаем для нашего эксперимента критическое (табличное) значение для 5-ти степеней свободы и альфа 0,05. Формула Excel будет выглядеть так:

ХИ2.ОБР(0,95;5)

ХИ2.ОБР.ПХ(0,05;5)

Результат будет одинаковым – 11,0705. Именно это значение мы видим в таблице (округленное до 1 знака после запятой).

Рассчитаем, наконец, p-level для 5-ти степеней свободы критерия χ 2 = 3,4. Нужна вероятность справа, поэтому берем функцию с добавкой ПХ (правый хвост)

ХИ2.РАСП.ПХ(3,4;5) = 0,63857

Значит, при 5-ти степенях свободы вероятность получить значение критерия χ 2 = 3,4 и больше равна почти 64%. Естественно, гипотеза не отклоняется (p-level больше 5%), частоты очень хорошо согласуются.

А теперь проверим гипотезу о согласии частот с помощью функции ХИ2.ТЕСТ.

Никаких таблиц, никаких громоздких расчетов. Указав в качестве аргументов функции столбцы с наблюдаемыми и ожидаемыми частотами, сразу получаем p-level. Красота.

Представим теперь, что вы играете в кости с подозрительным типом. Распределение очков от 1 до 5 остается прежним, но он выкидывает 26 шестерок (количество всех бросков становится 78).

P-level в этом случае оказывается 0,003, что гораздо меньше чем, 0,05. Есть серьезные основания сомневаться в правильности игральной кости. Вот, как выглядит эта вероятность на диаграмме распределения хи-квадрат.

Сам критерий хи-квадрат здесь получается 17,8, что, естественно, больше табличного (11,1).

Надеюсь, мне удалось объяснить, что такое критерий согласия χ 2 (хи-квадрат) Пирсона и как с его помощью проверяются статистические гипотезы.

Напоследок еще раз о важном условии! Критерий хи-квадрат исправно работает только в случае, когда количество всех частот превышает 50, а минимальное ожидаемое значение для каждой градации не меньше 5. Если в какой-либо категории ожидаемая частота менее 5, но при этом сумма всех частот превышает 50, то такую категорию объединяют с ближайшей, чтобы их общая часта превысила 5. Если это сделать невозможно, или сумма частот меньше 50, то следует использовать более точные методы проверки гипотез. О них поговорим в другой раз.

Ниже находится видео ролик о том, как в Excel проверить гипотезу с помощью критерия хи-квадрат.

Критерий независимости хи-квадрат используется для определения связи между двумя категориальными переменными. Примерами пар категориальных переменных являются: Семейное положение vs. Уровень занятости респондента; Порода собак vs. Профессия хозяина, Уровень з/п vs. Специализация инженера и др. При вычислении критерия независимости проверяется гипотеза о том, что между переменными связи нет. Вычисления будем производить с помощью функции MS EXCEL 2010 ХИ2.ТЕСТ() и обычными формулами.

Предположим у нас есть выборка данных, представляющая результат опроса 500 человек. Людям задавалось 2 вопроса: про их семейное положение (женаты, гражданский брак, не состоят в отношениях) и их уровень занятости (полный рабочий день, частичная занятость, временно не работает, на домохозяйстве, на пенсии, учеба). Все ответы поместили в таблицу:

Данная таблица называется таблицей сопряжённости признаков (или факторной таблицей, англ. Contingency table). Элементы на пересечении строк и столбцов таблицы обычно обозначают O ij (от англ. Observed, т.е. наблюденные, фактические частоты).

Нас интересует вопрос «Влияет ли Семейное положение на Занятость?», т.е. существует ли зависимость между двумя методами классификации выборки ?

При проверке гипотез такого вида обычно принимают, что нулевая гипотеза утверждает об отсутствии зависимости способов классификации.

Рассмотрим предельные случаи. Примером полной зависимости двух категориальных переменных является вот такой результат опроса:

В этом случае семейное положение однозначно определяет занятость (см. файл примера лист Пояснение ). И наоборот, примером полной независимости является другой результат опроса:

Обратите внимание, что процент занятости в этом случае не зависит от семейного положения (одинаков для женатых и не женатых). Это как раз совпадает с формулировкой нулевой гипотезы . Если нулевая гипотеза справедлива, то результаты опроса должны были бы так распределиться в таблице, что процент занятых был бы одинаковым независимо от семейного положения. Используя это, вычислим результаты опроса, которые соответствуют нулевой гипотезе (см. файл примера лист Пример ).

Сначала вычислим оценку вероятности, того, что элемент выборки будет иметь определенную занятость (см. столбец u i):

где с – количество столбцов (columns), равное количеству уровней переменной «Семейное положение».

Затем вычислим оценку вероятности, того, что элемент выборки будет иметь определенное семейное положение (см. строку v j).

где r – количество строк (rows), равное количеству уровней переменной «Занятость».

Теоретическая частота для каждой ячейки E ij (от англ. Expected, т.е. ожидаемая частота) в случае независимости переменных вычисляется по формуле:
E ij =n* u i * v j

Известно, что статистика Х 2 0 при больших n имеет приблизительно с (r-1)(c-1) степенями свободы (df – degrees of freedom):

Если вычисленное на основе выборки значение этой статистики «слишком большое» (больше порогового), то нулевая гипотеза отвергается. Пороговое значение вычисляется на основании , например с помощью формулы =ХИ2.ОБР.ПХ(0,05; df) .

Примечание : Уровень значимости обычно принимается равным 0,1; 0,05; 0,01.

При проверке гипотезы также удобно вычислять , которое мы сравниваем с уровнем значимости . p -значение рассчитывается с использованием с (r-1)*(c-1)=df степеней свободы.

Если вероятность, того что случайная величина имеющая с (r-1)(c-1) степенями свободы примет значение больше вычисленной статистики Х 2 0 , т.е. P{Х 2 (r-1)*(c-1) >Х 2 0 }, меньше уровня значимости , то нулевая гипотеза отклоняется.

В MS EXCEL p-значение можно вычислить с помощью формулы =ХИ2.РАСП.ПХ(Х 2 0 ;df) , конечно, вычислив непосредственно перед этим значение статистики Х 2 0 (это сделано в файле примера ). Однако, удобнее всего воспользоваться функцией ХИ2.ТЕСТ() . В качестве аргументов этой функции указываются ссылки на диапазоны содержащие фактические (Observed) и вычисленные теоретические частоты (Expected).

Если уровень значимости > p -значения , то означает это фактические и теоретические частоты, вычисленные из предположения справедливости нулевой гипотезы , серьезно отличаются. Поэтому, нулевую гипотезу нужно отклонить.

Использование функции ХИ2.ТЕСТ() позволяет ускорить процедуру проверки гипотез , т.к. не нужно вычислять значение статистики . Теперь достаточно сравнить результат функции ХИ2.ТЕСТ() с заданным уровнем значимости .

Примечание : Функция ХИ2.ТЕСТ() , английское название CHISQ.TEST, появилась в MS EXCEL 2010. Ее более ранняя версия ХИ2ТЕСТ() , доступная в MS EXCEL 2007 имеет тот же функционал. Но, как и для ХИ2.ТЕСТ() , теоретические частоты нужно вычислить самостоятельно.