Решение матриц. Объясняем, как решать матрицы. Матрицы и операции над ними

Матрицей размерности называется прямоугольная таблица, состоящая изэлементов, расположенных вm строках и n столбцах.

Элементы матрицы (первый индексi − номер строки, второй индекс j − номер столбца) могут быть числами, функциями и т. п. Матрицы обозначают заглавными буквами латинского алфавита.

Матрица называется квадратной , если у нее число строк равно числу столбцов (m = n ). В этом случае число n называется порядком матрицы, а сама матрица называется матрицей n -го порядка.

Элементы с одинаковыми индексами образуютглавную диагональ квадратной матрицы, а элементы (т.е. имеющие сумму индексов, равнуюn +1) − побочную диагональ .

Единичной матрицей называется квадратная матрица, все элементы главной диагонали которой равны 1, а остальные элементы равны 0. Она обозначается буквой Е .

Нулевая матрица − это матрица, все элементы которой равны 0. Нулевая матрица может быть любого размера.

К числу линейных операций над матрицами относятся:

1) сложение матриц;

2) умножение матриц на число.

Операция сложения матриц определена только для матриц одинаковой размерности.

Суммой двух матриц А и В называется матрица С , все элементы которой равны суммам соответствующих элементов матриц А и В :

.

Произведением матрицы А на число k называется матрица В , все элементы которой равны соответствующим элементам данной матрицы А , умноженным на число k :

Операция умножения матриц вводится для матриц, удовлетворяющих условию: число столбцов первой матрицы равно числу строк второй.

Произведением матрицы А размерности на матрицу В размерности называется матрицаС размерности , элементi -ой строки и j -го столбца которой равен сумме произведений элементов i -ой строки матрицы А на соответствующие элементы j -го столбца матрицы В :

Произведение матриц (в отличие от произведения действительных чисел) не подчиняется переместительному закону, т.е. в общем случае А В В А .

1.2. Определители. Свойства определителей

Понятие определителя вводится только для квадратных матриц.

Определителем матрицы 2-го порядка называется число, вычисляемое по следующему правилу

.

Определителем матрицы 3-го порядка называется число, вычисляемое по следующему правилу:

Первое из слагаемых со знаком «+» представляет собой произведение элементов, расположенных на главной диагонали матрицы (). Остальные два содержат элементы, расположенные в вершинах треугольников с основанием, параллельным главной диагонали (и). Со знаком «-» входят произведения элементов побочной диагонали () и элементов, образующих треугольники с основаниями, параллельными этой диагонали (и).

Это правило вычисления определителя 3-го порядка называется правилом треугольников (или правилом Саррюса).

Свойства определителей рассмотрим на примере определителей 3-го порядка.

1. При замене всех строк определителя на столбцы с теми же номерами, что и строки, определитель своего значения не меняет, т.е. строки и столбцы определителя равноправны

.

2. При перестановке двух строк (столбцов) определитель меняет свой знак.

3. Если все элементы некоторой строки (столбца) нули, то определитель равен 0.

4. Общий множитель всех элементов строки (столбца) можно вынести за знак определителя.

5. Определитель, содержащий две одинаковые строки (столбца), равен 0.

6. Определитель, содержащий две пропорциональные строки (столбца), равен нулю.

7. Если каждый элемент некоторого столбца (строки) определителя представляет сумму двух слагаемых, то определитель равен сумме двух определителей, в одном из которых в том же столбце (строке) стоят первые слагаемые, а в другом − вторые. Остальные элементы у обоих определителей одинаковые. Так,

.

8. Определитель не изменится, если к элементам какого-либо его столбца (строки) прибавить соответствующие элементы другого столбца (строки), умноженные на одно и то же число.

Задачи линейной алгебры. Понятие матрицы. Виды матриц. Операции с матрицами. Решение задач на преобразование матриц.

При решении различных задач математики очень часто приходится иметь дело с таблицами чисел, называемых матрицами. С помощью матриц удобно решать системы линейных уравнений, выполнять многие операции с векторами, решать различные задачи компьютерной графики и другие инженерные задачи.

Матрицей называется прямоугольная таблица из чисел, содержащая некоторое количество m строк и некоторое количество п столбцов. Числа т и п называются порядками матрицы. В случае, если т = п, матрица называется квадратной, а число m = n - ее порядком.

В дальнейшем для записи матриц будут применяться либо сдвоенные черточки, либо круглые скобки:

Или

Для краткого обозначения матрицы часто будет использоваться либо одна большая латинская буква (например, A), либо символ || a ij || , а иногда с разъяснением: А = || a ij || = (a ij), где (i = 1, 2, ..., т, j=1, 2, ..., n).

Числа a ij , входящие в состав данной матрицы, называются ее элементами. В записи a ij первый индекс і означает номер строки, а второй индекс j - номер столбца. В случае квадрат-ной матрицы

(1.1)

вводятся понятия главной и побочной диагоналей. Главной диагональю матрицы (1.1) называется диагональ а 11 а 12 a nn идущая из левого верхнего угла этой матрицы в правый нижний ее угол. Побочной диагональю той же матрицы называ­ется диагональ а n 1 а (n -1)2 a 1 n , идущая из левого нижнего угла в правый верхний угол.

Основные операции над матрицами и их свойства.

Перейдем к определению основных операции над матрицами.

Сложение матриц. Суммой двух матриц A = || a ij || , где и В = || b ij || , где (i = 1, 2, ..., т, j=1, 2, ..., n) одних и тех же порядков т и п называется матрица С = || c ij || (і =1,2, ..., т; j = 1, 2, ...., п) тех же порядков т и п, элементы с ij которой определяются по формуле

, где (i = 1, 2, ..., т, j=1, 2, ..., n) (1.2)

Для обозначения суммы двух матриц используется запись С = А + В. Операция составления суммы матриц называется их сложением. Итак, по определению:

+ =

Из определения суммы матриц, а точнее из формул (1.2) непосредственно вытекает, что операция сложения матриц обладает теми же свойствами, что и операция сложения веществен-ных чисел, а именно:

1) переместительным свойством: А + В = В + А,

2) сочетательным свойством: (A + B) + С = А + (В + С).

Эти свойства позволяют не заботиться о порядке следования слагаемых матриц при сложении двух или большего числа матриц.

Умножение матрицы на число. Произведением матрицы A = || a ij || , где (i = 1, 2, ..., m, j=1, 2, ..., n) на вещественное число l, называется матрица С = || c ij || (і =1,2, ..., m; j = 1, 2, ...., n) , элементы которой определяются по формуле:

, где (i = 1, 2, ..., т, j=1, 2, ..., n) (1.3)

Для обозначения произведения матрицыі на число используется запись С = l A или С = А l. Операция составления произ­ведения матрицы на число называется умножением матрицы на это число.

Непосредственно из формулы (1.3) ясно, что умножение матрицы на число обладает следующими свойствами:

1) сочетательным свойством относительно числового множителя: (l m) A = l (m A);

2) распределительным свойством относительно суммы матриц: l (A + B) = l A + l B;

3) распределительным свойством относительно суммы чисел: (l + m) A = l A + m A

Замечание. Разностью двух матриц А и В одинаковых порядков т и п естественно назвать такую матрицу С тех же порядков т и п, которая в сумме с матрицей B дает матрицу A. Для обозначения разности двух матриц используется естественная запись: С = A - В.

Очень легко убедиться в том, что разность С двух матриц А и В может быть получена по правилу С = A + (–1) В.

Произведение матриц или перемножение матриц.

Произведением матрицы A = || a ij || , где (i = 1, 2, ..., m, j = 1, 2, ..., n) имеющей по­рядки, соответственно равные т и n, на матрицу В = || b ij || , где (i = 1, 2, ..., n , j=1, 2, ..., р), имеющую порядки, соответственно равные n и р, называется матрица С = || c ij || (і =1,2, ..., m; j = 1, 2, ...., р) , имеющая порядки, соответственно равные т и р элементы которой определя-ются по формуле:

где (i = 1, 2, ..., m, j = 1, 2, ..., p) (1.4)

Для обозначения произведения матрицыі А на матрицу В используют запись С = А × В . Операция составления произведения матрицы А на матрицу В называется перемножением этих матриц.

Из сформулированного выше определения вытекает, что матрицу А можно умножить не на всякую матрицу В, необходимо, чтобы число столбцов матрицы А было равно числу строк матрицы В.

Формула (1.4) представляет собой правило составления элементов матрицы С, являющейся произведением матрицы А на матрицу В. Это правило можно сформулировать и словесно: элемент c i j стоящий на пвресечении і-й строки и j-го столбца матрицьі С = А В, равен сумме попарных произведений соответствующих элементов і-й строки матрицы А и j-го столбца матрицы В.

В качестве примера применения указанного правила приведем формулу перемножения квадратных матриц второго порядка.

× =

Из формулы (1.4) вытекают следующие свойства произведения матрицы А на матри-цу В:

1) сочетательное свойство: (А В) С = А (В С);

2) распределительное относительно суммы матриц свойство:

(A + B) С = А С + В С или A (В + С) = A В + А С.

Вопрос о перестановочном (переместительном) свойстве произведения матрицы A на матрицу В имеет смысл ставить лишь для квадратных матриц A и В одинакового порядка.

Приведем важные частные случаи матриц, для которых справедливо и переста-новочное свойство. Две матрицы для произведения которых справедливо перестановочное свойство, принято називать коммутирующими.

Среди квадратных матриц выделим класс так называемых диагональных матриц, у каждой из которых элементы, расположенные вне главной диагонали, равны нулю. Каждая диа-гональная матрица порядка п имеет вид

D = (1.5)

где d 1 , d 2 , , d n -какие угодно числа. Легко видеть, что если все эти числа равны между собой, т. е. d 1 = d 2 = … = d n то для любой квадратной матрицы А порядка п справедливо равенство А D = D А.

Среди всех диагональных матриц (1.5) с совпадающими элементами d 1 = d 2 = … = d n = = d особо важную роль играют две матрицы. Первая из этих матриц получается при d = 1, называется единичной матрицей n Е. Вторая матрица получается при d = 0 , называется нулевой матрицей n -го порядка и обозначается символом O. Таким образом,

E = O =

В силу доказанного выше А Е = Е А и А О = О А. Более того, легко показать, что

А Е = Е А = А, А О = О А = 0. (1.6)

Первая из формул (1.6) характеризует особую роль единичной матрицы Е, аналогичную той роли, которую играет число 1 при перемножений вещественных чисел. Что же касается особой роли нулевой матрицы О, то ее выявляет не только вторая из формул (1.7), но и элементарно проверяемое равенство

А + 0 = 0 + А = А.

В заключение заметим, что понятие нулевой матрицы можно вводить и для неквадрат-ных матриц (нулевой называют любую матрицу, все элементы которой равныї нулю).

Блочные матрицы

Предположим, что некоторая матрица A = || a ij || при помощи горизонтальных и вертикальных прямых разбита на отдельные прямоугольные клетки, каждая из которых представляет собой матрицу меньших размеров и называется блоком исходной матрицы. В таком случае возникает возможность рассмотрения исходной матрицы А как некоторой новой (так называемой б л о ч н о й) матрицыі А = || A a b || , элементами которой служат указанные блоки. Указанные элементы мы обозначаем большой латинской буквой, чтобы подчеркнуть, что они являются, вообще говоря, матрицами, а не числами и (как обычные числовые элементы) снабжаем двумя индексами, первый из которых указывает номер «блочной» строки, а второй - номер «блочного» столбца.

Например, матрицу

можно рассматривать как блочную матрицу

элементами которой служат следующие блоки:

Замечательным является тот факт, что основные операции с блочными матрицами совершаются по тем же правилам, по которым они совершаются с обычными числовыми матрицами, только в роли элементов выступают блоки.

Понятие определителя.

Рассмотрим произвольную квадрат­ную матрицу любого порядка п:

A = (1.7)

С каждой такой матрицей свяжем вполне определенную числен­ную характеристику, называемую определителем, соответствующим этой матрице.

Если порядок n матрицы (1.7) равен единице, то эта матрица состоит из одного элемен-та а i j определителем первого порядка соответствующим такой матрице, мы назовем величину этого элемента.

то определителем второго порядка, соответствующим такой мат­рице, назовем число, равное а 11 а 22 - а 12 а 21 и обозначаемое одним из символов:

Итак, по определению

(1.9)

Формула (1.9) представляет собой правило составления определителя второго порядка по элементам соответствующей ему матрицы. Словесная формулировка этого правила такова: определитель второго порядка, соответствующий матрице (1.8), равен разности произведения элементов, стоящих на главной диагонали этой матрицы, и произведения элементов, стоящих на побочной ее диагонали. Определители второго и более высоких порядков находят широкое применение при решении систем линейных уравнений.

Рассмотрим, как выполняются операции с матрицами в системе MathCad . Простейшие операции матричной алгебры реализованы в MathCad в виде операторов. Написание операторов по смыслу максимально приближено к их математическому действию. Каждый оператор выражается соответствующим символом. Рассмотрим матричные и векторные операции MathCad 2001. Векторы являются частным случаем матриц размерности n x 1, поэтому для них справедливы все те операции, что и для матриц, если ограничения осо­бо не оговорены (например, некоторые операции применимы только к квадратным матрицам n x n ). Какие-то действия допустимы только для векторов (например, скалярное произведение), а какие-то, несмотря на одинако­вое написание, по-разному действуют на векторы и матрицы.


В появившемся диалоге задайте число строк и столбцов матрицы.

q После нажатия кнопки OK открывается поле для ввода элементов матрицы. Для того, чтобы ввести элемент матрицы, установите курсор в отмеченной позиции и введите с клавиатуры число или выражение.

Для того, чтобы выполнить какую-либо операцию с помощью панели инструментов, нужно:

q выделить матрицу и щелкнуть в панели по кнопке операции,

q или щелкнуть по кнопке в панели и ввести в помеченной позиции имя матрицы.

Меню “Символы” содержит три операции - транспонирование, инвертирование, определитель .

Это означает, например, что вычислить определитель матрицы можно, выполнив команду Символы/Матрицы/Определитель .

Номер первой строки (и первого столбца) матрицы MathCAD хранит в переменной ORIGIN. По умолчанию отсчет ведется от нуля. В математической записи чаще принято вести отсчет от 1. Для того, чтобы MathCAD вел отсчет номеров строк и столбцов от 1, нужно задать значение переменной ORIGIN:=1.

Функции, предназначенные для работы с задачами линейной алгебры, собраны в разделе “Векторы и матрицы” диалога “вставить функцию” (напоминаем, что он вызывается кнопкой на панели “Стандартные”). Основные из этих функций будут описаны позже.

Транспонирование

Рис.2 Транспонирование матриц

В MathCAD можно как складывать матрицы, так и вычитать их друг из друга. Для этих операторов применяются символы <+> или <-> соответст­венно. Матрицы должны иметь одинаковую размерность, иначе будет выда­но сообщение об ошибке. Каждый элемент суммы двух матриц равен сумме соответствующих элементов матриц-слагаемых (пример на рис.3).
Кроме сложения матриц, MathCAD поддерживает операцию сложения матрицы со скалярной величиной, т.е. числом (пример на рис.4). Каждый элемент результирующей матрицы равен сумме соответст-вующего элемента исходной матрицы и скалярной величины.
Чтобы ввести символ умножения, нужно нажать клавишу со звездочкой <*> или воспользоваться панелью инструментовMatrix (Матрица), нажав на ней кнопку Dot Product (Умножение) (рис.1). Умножение матриц обозначается по умолчанию точкой, как показано в примере на рис 6. Символ умножения матриц можно выбирать точно так же, как и в скалярных выражениях.
Еще один пример, относящийся к умножению вектора на матрицу-строку и, наоборот, строки на вектор, приведен на рис. 7. Во второй строке этого примера показано, как выглядит формула при выборе отображения оператора умноженияNo Space (Вместе). Однако тот же самый оператор умножения действует на два вектора по-другому.

Похожая информация.


Это понятие, которое обобщает все возможные операции, производимые с матрицами. Математическая матрица - таблица элементов. О такой таблице, где m строк и n столбцов, говорят, что это матрица имеет размерность m на n .

Общий вид матрицы:

Для решения матриц необходимо понимать, что такое матрица и знать основные ее параметры. Основные элементы матрицы:

  • Главная диагональ, состоящая из элементов а 11 ,а 22 …..а mn .
  • Побочная диагональ, состоящая из элементов а 1n ,а 2n-1 …..а m1 .

Основные виды матриц:

  • Квадратная - такая матрица, где число строк = числу столбцов (m=n ).
  • Нулевая - где все элементы матрицы = 0.
  • Транспонированная матрица — матрица В , которая была получена из исходной матрицы A путем замены строк на столбцы.
  • Единичная - все элементы главной диагонали = 1, все остальные = 0.
  • Обратная матрица — матрица, при умножении на которую исходная матрица даёт в результате единичную матрицу.

Матрица может быть симметричной относительно главной и побочной диагонали. Т.е., если а 12 =а 21 , а 13 =а 31 ,….а 23 =а 32 …. а m-1n =а mn-1 , то матрица симметрична относительно главной диагонали. Симметричными могут быть лишь квадратные матрицы.

Методы решения матриц.

Почти все методы решения матрицы заключаются в нахождении ее определителя n -го порядка и большинство из них довольно громоздки. Чтобы найти определитель 2го и 3го порядка есть другие, более рациональные способы.

Нахождение определителей 2-го порядка.

Для вычисления определителя матрицы А 2го порядка, необходимо из произведения элементов главной диагонали вычесть произведение элементов побочной диагонали:

Методы нахождения определителей 3го порядка.

Ниже приведены правила для нахождения определителя 3го порядка.

Упрощенно правило треугольника, как одного из методов решения матриц , можно изобразить таким образом:

Другими словами, произведение элементов в первом определителе, которые соединены прямыми, берется со знаком "+"; так же, для 2го определителя - соответствующие произведения берутся со знаком "-", то есть по такой схеме:

При решении матриц правилом Саррюса , справа от определителя дописывают первые 2 столбца и произведения соответствующих элементов на главной диагонали и на диагоналях, которые ей параллельны, берут со знаком "+"; а произведения соответствующих элементов побочной диагонали и диагоналей, которые ей параллельны, со знаком "-":

Разложение определителя по строке или столбцу при решении матриц.

Определитель равен сумме произведений элементов строки определителя на их алгебраические дополнения. Обычно выбирают ту строку/столбец, в которой/ом есть нули. Строку либо столбец, по которой/ому ведется разложение, будут обозначать стрелкой.

Приведение определителя к треугольному виду при решении матриц.

При решении матриц методом приведения определителя к треугольному виду, работают так: с помощью простейших преобразований над строками либо столбцами, определитель становится треугольного вида и тогда его значение, в соответствии со свойствами определителя, будет равно произведению элементов, которые стоят на главной диагонали.

Теорема Лапласа при решении матриц.

Решая матрицы по теореме Лапласа, необходимо знать непосредственно саму теорему. Теорема Лапласа: Пусть Δ - это определитель n -го порядка. Выбираем в нем любые k строк (либо столбцов), при условии k n - 1 . В таком случае сумма произведений всех миноров k -го порядка, содержащихся в выбранных k строках (столбцах), на их алгебраические дополнения будет равна определителю.

Решение обратной матрицы.

Последовательность действий для решения обратной матрицы :

  1. Понять, квадратная ли данная матрица. В случае отрицательного ответа становится ясно, что обратной матрицы для нее не может быть.
  2. Вычисляем алгебраические дополнения.
  3. Составляем союзную (взаимную, присоединённую) матрицу C .
  4. Составляем обратную матрицу из алгебраических дополнений: все элементы присоединённой матрицы C делим на определитель начальной матрицы. Итоговая матрица будет искомой обратной матрицей относительно заданной.
  5. Проверяем выполненную работу: умножаем матрицу начальную и полученную матрицы, результатом должна стать единичная матрица.

Решение систем матриц.

Для решения систем матриц наиболее часто используют метод Гаусса.

Метод Гаусса — это стандартный способ решения систем линейных алгебраических уравнений (СЛАУ) и он заключается в том, что последовательно исключаются переменные, т.е., при помощи элементарных изменений систему уравнений доводят до эквивалентной системы треугольного вида и из нее, последовательно, начиная с последних (по номеру), находят каждый элемент системы.

Метод Гаусса является самым универсальным и лучшим инструментом для нахождения решения матриц. Если у системы бесконечное множество решений или система является несовместимой, то ее нельзя решать по правилу Крамера и матричным методом.

Метод Гаусса подразумевает также прямой (приведение расширенной матрицы к ступенчатому виду, т.е. получение нулей под главной диагональю) и обратный (получение нулей над главной диагональю расширенной матрицы) ходы. Прямой ход и есть метод Гаусса, обратный - метод Гаусса-Жордана. Метод Гаусса-Жордана отличается от метода Гаусса лишь последовательностью исключения переменных.

В этой теме будут рассмотрены такие операции, как сложение и вычитание матриц, умножение матрицы на число, умножение матрицы на матрицу, транспонирование матрицы. Все обозначения, которые используются на данной странице, взяты из предыдущей темы .

Сложение и вычитание матриц.

Суммой $A+B$ матриц $A_{m\times n}=(a_{ij})$ и $B_{m\times n}=(b_{ij})$ называется матрица $C_{m\times n}=(c_{ij})$, где $c_{ij}=a_{ij}+b_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Аналогичное определение вводят и для разности матриц:

Разностью $A-B$ матриц $A_{m\times n}=(a_{ij})$ и $B_{m\times n}=(b_{ij})$ называется матрица $C_{m\times n}=(c_{ij})$, где $c_{ij}=a_{ij}-b_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Пояснение к записи $i=\overline{1,m}$: показать\скрыть

Запись "$i=\overline{1,m}$" означает, что параметр $i$ изменяется от 1 до m. Например, запись $i=\overline{1,5}$ говорит о том, что параметр $i$ принимает значения 1, 2, 3, 4, 5.

Стоит обратить внимание, что операции сложения и вычитания определены только для матриц одинакового размера. Вообще, сложение и вычитание матриц - операции, ясные интуитивно, ибо означают они, по сути, всего лишь суммирование или вычитание соответствующих элементов.

Пример №1

Заданы три матрицы:

$$ A=\left(\begin{array} {ccc} -1 & -2 & 1 \\ 5 & 9 & -8 \end{array} \right)\;\; B=\left(\begin{array} {ccc} 10 & -25 & 98 \\ 3 & 0 & -14 \end{array} \right); \;\; F=\left(\begin{array} {cc} 1 & 0 \\ -5 & 4 \end{array} \right). $$

Можно ли найти матрицу $A+F$? Найти матрицы $C$ и $D$, если $C=A+B$ и $D=A-B$.

Матрица $A$ содержит 2 строки и 3 столбца (иными словами - размер матрицы $A$ равен $2\times 3$), а матрица $F$ содержит 2 строки и 2 столбца. Размеры матрицы $A$ и $F$ не совпадают, поэтому сложить их мы не можем, т.е. операция $A+F$ для данных матриц не определена.

Размеры матриц $A$ и $B$ совпадают, т.е. данные матрицы содержат равное количество строк и столбцов, поэтому к ним применима операция сложения.

$$ C=A+B=\left(\begin{array} {ccc} -1 & -2 & 1 \\ 5 & 9 & -8 \end{array} \right)+ \left(\begin{array} {ccc} 10 & -25 & 98 \\ 3 & 0 & -14 \end{array} \right)=\\= \left(\begin{array} {ccc} -1+10 & -2+(-25) & 1+98 \\ 5+3 & 9+0 & -8+(-14) \end{array} \right)= \left(\begin{array} {ccc} 9 & -27 & 99 \\ 8 & 9 & -22 \end{array} \right) $$

Найдем матрицу $D=A-B$:

$$ D=A-B=\left(\begin{array} {ccc} -1 & -2 & 1 \\ 5 & 9 & -8 \end{array} \right)- \left(\begin{array} {ccc} 10 & -25 & 98 \\ 3 & 0 & -14 \end{array} \right)=\\= \left(\begin{array} {ccc} -1-10 & -2-(-25) & 1-98 \\ 5-3 & 9-0 & -8-(-14) \end{array} \right)= \left(\begin{array} {ccc} -11 & 23 & -97 \\ 2 & 9 & 6 \end{array} \right) $$

Ответ : $C=\left(\begin{array} {ccc} 9 & -27 & 99 \\ 8 & 9 & -22 \end{array} \right)$, $D=\left(\begin{array} {ccc} -11 & 23 & -97 \\ 2 & 9 & 6 \end{array} \right)$.

Умножение матрицы на число.

Произведением матрицы $A_{m\times n}=(a_{ij})$ на число $\alpha$ называется матрица $B_{m\times n}=(b_{ij})$, где $b_{ij}=\alpha\cdot a_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Попросту говоря, умножить матрицу на некое число - означает умножить каждый элемент заданной матрицы на это число.

Пример №2

Задана матрица: $ A=\left(\begin{array} {ccc} -1 & -2 & 7 \\ 4 & 9 & 0 \end{array} \right)$. Найти матрицы $3\cdot A$, $-5\cdot A$ и $-A$.

$$ 3\cdot A=3\cdot \left(\begin{array} {ccc} -1 & -2 & 7 \\ 4 & 9 & 0 \end{array} \right) =\left(\begin{array} {ccc} 3\cdot(-1) & 3\cdot(-2) & 3\cdot 7 \\ 3\cdot 4 & 3\cdot 9 & 3\cdot 0 \end{array} \right)= \left(\begin{array} {ccc} -3 & -6 & 21 \\ 12& 27 & 0 \end{array} \right).\\ -5\cdot A=-5\cdot \left(\begin{array} {ccc} -1 & -2 & 7 \\ 4 & 9 & 0 \end{array} \right) =\left(\begin{array} {ccc} -5\cdot(-1) & -5\cdot(-2) & -5\cdot 7 \\ -5\cdot 4 & -5\cdot 9 & -5\cdot 0 \end{array} \right)= \left(\begin{array} {ccc} 5 & 10 & -35 \\ -20 & -45 & 0 \end{array} \right). $$

Запись $-A$ есть сокращенная запись для $-1\cdot A$. Т.е., чтобы найти $-A$ нужно все элементы матрицы $A$ умножить на (-1). По сути, это означает, что знак всех элементов матрицы $A$ изменится на противоположный:

$$ -A=-1\cdot A=-1\cdot \left(\begin{array} {ccc} -1 & -2 & 7 \\ 4 & 9 & 0 \end{array} \right)= \left(\begin{array} {ccc} 1 & 2 & -7 \\ -4 & -9 & 0 \end{array} \right) $$

Ответ : $3\cdot A=\left(\begin{array} {ccc} -3 & -6 & 21 \\ 12& 27 & 0 \end{array} \right);\; -5\cdot A=\left(\begin{array} {ccc} 5 & 10 & -35 \\ -20 & -45 & 0 \end{array} \right);\; -A=\left(\begin{array} {ccc} 1 & 2 & -7 \\ -4 & -9 & 0 \end{array} \right)$.

Произведение двух матриц.

Определение этой операции громоздко и, на первый взгляд, непонятно. Поэтому сначала укажу общее определение, а потом подробно разберем, что оно означает и как с ним работать.

Произведением матрицы $A_{m\times n}=(a_{ij})$ на матрицу $B_{n\times k}=(b_{ij})$ называется матрица $C_{m\times k}=(c_{ij})$, для которой каждый элемент $c_{ij}$ равен сумме произведений соответствующих элементов i-й строки матрицы $A$ на элементы j-го столбца матрицы $B$: $$c_{ij}=\sum\limits_{p=1}^{n}a_{ip}b_{pj}, \;\; i=\overline{1,m}, j=\overline{1,n}.$$

Пошагово умножение матриц разберем на примере. Однако сразу стоит обратить внимание, что перемножать можно не все матрицы. Если мы хотим умножить матрицу $A$ на матрицу $B$, то сперва нужно убедиться, что количество столбцов матрицы $A$ равно количеству строк матрицы $B$ (такие матрицы часто называют согласованными ). Например, матрицу $A_{5\times 4}$ (матрица содержит 5 строк и 4 столбца), нельзя умножать на матрицу $F_{9\times 8}$ (9 строк и 8 столбцов), так как количество столбцов матрицы $A$ не равно количеству строк матрицы $F$, т.е. $4\neq 9$. А вот умножить матрицу $A_{5\times 4}$ на матрицу $B_{4\times 9}$ можно, так как количество столбцов матрицы $A$ равно количеству строк матрицы $B$. При этом результатом умножения матриц $A_{5\times 4}$ и $B_{4\times 9}$ будет матрица $C_{5\times 9}$, содержащая 5 строк и 9 столбцов:

Пример №3

Заданы матрицы: $ A=\left(\begin{array} {cccc} -1 & 2 & -3 & 0 \\ 5 & 4 & -2 & 1 \\ -8 & 11 & -10 & -5 \end{array} \right)$ и $ B=\left(\begin{array} {cc} -9 & 3 \\ 6 & 20 \\ 7 & 0 \\ 12 & -4 \end{array} \right)$. Найти матрицу $C=A\cdot B$.

Для начала сразу определим размер матрицы $C$. Так как матрица $A$ имеет размер $3\times 4$, а матрица $B$ имеет размер $4\times 2$, то размер матрицы $C$ таков: $3\times 2$:

Итак, в результате произведения матриц $A$ и $B$ мы должны получить матрицу $C$, состоящую из трёх строк и двух столбцов: $ C=\left(\begin{array} {cc} c_{11} & c_{12} \\ c_{21} & c_{22} \\ c_{31} & c_{32} \end{array} \right)$. Если обозначения элементов вызывают вопросы, то можно глянуть предыдущую тему: "Матрицы. Виды матриц. Основные термины" , в начале которой поясняется обозначение элементов матрицы. Наша цель: найти значения всех элементов матрицы $C$.

Начнем с элемента $c_{11}$. Чтобы получить элемент $c_{11}$ нужно найти сумму произведений элементов первой строки матрицы $A$ и первого столбца матрицы $B$:

Чтобы найти сам элемент $c_{11}$ нужно перемножить элементы первой строки матрицы $A$ на соответствующие элементы первого столбца матрицы $B$, т.е. первый элемент на первый, второй на второй, третий на третий, четвертый на четвертый. Полученные результаты суммируем:

$$ c_{11}=-1\cdot (-9)+2\cdot 6+(-3)\cdot 7 + 0\cdot 12=0. $$

Продолжим решение и найдем $c_{12}$. Для этого придётся перемножить элементы первой строки матрицы $A$ и второго столбца матрицы $B$:

Аналогично предыдущему, имеем:

$$ c_{12}=-1\cdot 3+2\cdot 20+(-3)\cdot 0 + 0\cdot (-4)=37. $$

Все элементы первой строки матрицы $C$ найдены. Переходим ко второй строке, которую начинает элемент $c_{21}$. Чтобы его найти придётся перемножить элементы второй строки матрицы $A$ и первого столбца матрицы $B$:

$$ c_{21}=5\cdot (-9)+4\cdot 6+(-2)\cdot 7 + 1\cdot 12=-23. $$

Следующий элемент $c_{22}$ находим, перемножая элементы второй строки матрицы $A$ на соответствующие элементы второго столбца матрицы $B$:

$$ c_{22}=5\cdot 3+4\cdot 20+(-2)\cdot 0 + 1\cdot (-4)=91. $$

Чтобы найти $c_{31}$ перемножим элементы третьей строки матрицы $A$ на элементы первого столбца матрицы $B$:

$$ c_{31}=-8\cdot (-9)+11\cdot 6+(-10)\cdot 7 + (-5)\cdot 12=8. $$

И, наконец, для нахождения элемента $c_{32}$ придется перемножить элементы третьей строки матрицы $A$ на соответствующие элементы второго столбца матрицы $B$:

$$ c_{32}=-8\cdot 3+11\cdot 20+(-10)\cdot 0 + (-5)\cdot (-4)=216. $$

Все элементы матрицы $C$ найдены, осталось лишь записать, что $C=\left(\begin{array} {cc} 0 & 37 \\ -23 & 91 \\ 8 & 216 \end{array} \right)$. Или, если уж писать полностью:

$$ C=A\cdot B =\left(\begin{array} {cccc} -1 & 2 & -3 & 0 \\ 5 & 4 & -2 & 1 \\ -8 & 11 & -10 & -5 \end{array} \right)\cdot \left(\begin{array} {cc} -9 & 3 \\ 6 & 20 \\ 7 & 0 \\ 12 & -4 \end{array} \right)=\left(\begin{array} {cc} 0 & 37 \\ -23 & 91 \\ 8 & 216 \end{array} \right). $$

Ответ : $C=\left(\begin{array} {cc} 0 & 37 \\ -23 & 91 \\ 8 & 216 \end{array} \right)$.

Кстати сказать, зачастую нет резона расписывать подробно нахождение каждого элемента матрицы-результата. Для матриц, размер которых невелик, можно поступать и так:

Стоит также обратить внимание, что умножение матриц некоммутативно. Это означает, что в общем случае $A\cdot B\neq B\cdot A$. Лишь для некоторых типов матриц, которые именуют перестановочными (или коммутирующими), верно равенство $A\cdot B=B\cdot A$. Именно исходя из некоммутативности умножения, требуется указывать как именно мы домножаем выражение на ту или иную матрицу: справа или слева. Например, фраза "домножим обе части равенства $3E-F=Y$ на матрицу $A$ справа" означает, что требуется получить такое равенство: $(3E-F)\cdot A=Y\cdot A$.

Транспонированной по отношению к матрице $A_{m\times n}=(a_{ij})$ называется матрица $A_{n\times m}^{T}=(a_{ij}^{T})$, для элементов которой $a_{ij}^{T}=a_{ji}$.

Попросту говоря, для того, чтобы получить транспонированную матрицу $A^T$, нужно в исходной матрице $A$ заменить столбцы соответствующими строками по такому принципу: была первая строка - станет первый столбец; была вторая строка - станет второй столбец; была третья строка - станет третий столбец и так далее. Например, найдем транспонированную матрицу к матрице $A_{3\times 5}$:

Соответственно, если исходная матрица имела размер $3\times 5$, то транспонированная матрица имеет размер $5\times 3$.

Некоторые свойства операций над матрицами.

Здесь предполагается, что $\alpha$, $\beta$ - некоторые числа, а $A$, $B$, $C$ - матрицы. Для первых четырех свойств я указал названия, остальные можно назвать по аналогии с первыми четырьмя.

  1. $A+B=B+A$ (коммутативность сложения)
  2. $A+(B+C)=(A+B)+C$ (ассоциативность сложения)
  3. $(\alpha+\beta)\cdot A=\alpha A+\beta A$ (дистрибутивность умножения на матрицу относительно сложения чисел)
  4. $\alpha\cdot(A+B)=\alpha A+\alpha B$ (дистрибутивность умножения на число относительно сложения матриц)
  5. $A(BC)=(AB)C$
  6. $(\alpha\beta)A=\alpha(\beta A)$
  7. $A\cdot (B+C)=AB+AC$, $(B+C)\cdot A=BA+CA$.
  8. $A\cdot E=A$, $E\cdot A=A$, где $E$ - единичная матрица соответствующего порядка.
  9. $A\cdot O=O$, $O\cdot A=O$, где $O$ - нулевая матрица соответствующего размера.
  10. $\left(A^T \right)^T=A$
  11. $(A+B)^T=A^T+B^T$
  12. $(AB)^T=B^T\cdot A^T$
  13. $\left(\alpha A \right)^T=\alpha A^T$

В следующей части будет рассмотрена операция возведения матрицы в целую неотрицательную степень, а также решены примеры, в которых потребуется выполнение нескольких операций над матрицами.

Матрицы и определители

1. 1 Матрицы. Понятия.

Прямоугольной матрицей размера m x n называется совокупность mn чисел, расположенных в виде прямоугольной таблицы, содержащей m строк и n столбцов. Мы будем записывать матрицу в виде

или сокращенно в виде A = (a ij) (i = ; j = ). Числа a ij , составляющие данную матрицу, называются ее элементами; первый индекс указывает на номер строки, второй - на номер столбца. Две матрицы A = (a ij) и B = (b ij) одинакового размера называются равными, если попарно равны их элементы, стоящие на одинаковых местах, то есть A = B, если a ij = b ij .

Матрица, состоящая из одной строки или одного столбца, называется соответственно вектор-строкой или вектор-столбцом. Вектор-столбцы и вектор-строки называют просто векторами.

Матрица, состоящая из одного числа, отождествляется с этим числом. Матрица размера m x n , все элементы которой равны нулю, называются нулевой матрицей и обозначается через 0. Элементы матрицы с одинаковыми индексами называют элементами главной диагонали. Если число строк матрицы равно числу столбцов, то есть m = n , то матрицу называют квадратной порядка n . Квадратные матрицы, у которых отличны от нуля лишь элементы главной диагонали, называются диагональными матрицами и записываются так:

.

Если все элементы a ii диагональной матрицы равны 1, то матрица называется единичной и обозначается буквой Е:

Квадратная матрица называется треугольной, если все элементы, стоящие выше (или ниже) главной диагонали, равны нулю. Транспонированием называется такое преобразование матрицы, при котором строки и столбцы меняются местами с сохранением их номеров. Обозначается транспонирование значком Т наверху.

Пусть дана матрица (4.1). Переставим строки со столбцами. Получим матрицу

A T = ,

которая будет транспонированной по отношению к матрице А. В частности, при транспонировании вектора-столбца получается вектор-строка и наоборот.

Основные операции над матрицами.

Основными арифметическими операциями над матрицами являются умножение матрицы на число, сложение и умножение матриц.



Перейдем к определению основных операций над матрицами.

Сложение матриц : Суммой двух матриц, например: A и B, имеющих одинаковое количество строк и столбцов, иными словами, одних и тех же порядков m и n называется матрица С = (Сij)(i = 1, 2, …m; j = 1, 2, …n) тех же порядков m и n, элементы Cij которой равны.

Cij = Aij + Bij (i = 1, 2, …, m; j = 1, 2, …, n) (1.2)

Для обозначения суммы двух матриц используется запись C = A + B. Операция составления суммы матриц называется их сложением

Итак по определению имеем:

+ =

=

Из определения суммы матриц, а точнее из формулы (1.2) непосредственно вытекает, что операция сложения матриц обладает теми же свойствами, что и операция сложения вещественных чисел, а именно:

1) переместительным свойством: A + B = B + A

2) сочетательным свойством: (A + B) + C = A + (B + C)

Эти свойства позволяют не заботиться о порядке следования слагаемых матриц при сложении двух или большего числа матриц.

Умножение матрицы на число :

Произведением матрицы A = (Aij) (i = 1, 2, …, m; j = 1, 2, …, n) на вещественное число называется матрица C = (Cij) (i = 1, 2, … , m; j = 1, 2, …, n), элементы которой равны

Cij = Aij (i = 1, 2, …, m; j = 1, 2, …, n). (1.3)

Для обозначения произведения матрицы на число используется запись C = A или C = A . Операция составления произведения матрицы на число называется умножением матрицы на это число.

Непосредственно из формулы (1.3) ясно, что умножение матрицы на число обладает следующими свойствами:

1) распределительным свойством относительно суммы матриц:

(A + B) = A + B

2) сочетательным свойством относительно числового множителя:

3) распределительным свойством относительно суммы чисел:

( + ) A = A + A.

Замечание: Разностью двух матриц A и B одинаковых порядков естественно назвать такую матрицу C тех же порядков, которая в сумме с матрицей B дает матрицу A. Для обозначения разности двух матриц используется естественная запись: C = A – B.

Перемножение матриц :

Произведением матрицы A = (Aij) (i = 1, 2, …, m; j = 1, 2, …, n), имеющей порядки соответственно равные m и n, на матрицу B = (Bij) (i = 1, 2, …, n;

j = 1, 2, …, p), имеющую порядки соответственно равные n и p, называется матрица C = (Сij) (i = 1, 2, … , m; j = 1, 2, … , p), имеющая порядки, соответственно равные m и p, и элементы Cij, определяемые формулой

Cij = (i = 1, 2, …, m; j = 1, 2, …, p) (1.4)

Для обозначения произведения матрицы A на матрицу B используют запись

C = AB. Операция составления произведения матрицы A на матрицу B называется перемножением этих матриц. Из сформулированного выше определения вытекает, что матрицу A можно умножить не на всякую матрицу B: необходимо чтобы число столбцов матрицы A было равно числу строк матрицы B. Для того чтобы оба произведения AB и BA не только были определены, но и имели одинаковый порядок, необходимо и достаточно, чтобы обе матрицы A и B были квадратными матрицами одного и того же порядка.

Формула (1.4) представляет собой правило составления элементов матрицы C,

являющейся произведением матрицы A на матрицу B. Это правило можно сформулировать и словесно: Элемент Cij, стоящий на пересечении i-й строки и j-го столбца матрицы C = AB, равен сумме попарных произведений соответствующих элементов i-й строки матрицы A и j-го столбца матрицы B. В качестве примера применения указанного правила приведем формулу перемножения квадратных матриц второго порядка

Из формулы (1.4) вытекают следующие свойства произведения матрицы A на матрицу B:

1) сочетательное свойство: (AB) C = A (BC);

2) распределительное относительно суммы матриц свойство:

(A + B) C = AC + BC или A (B + C) = AB + AC.

Вопрос о перестановочном свойстве произведения матриц имеет смысл ставить лишь для квадратных матриц одинакового порядка. Элементарные примеры показывают, что произведений двух квадратных матриц одинакового порядка не обладает, вообще говоря, перестановочным свойством. В самом деле, если положить

A = , B = , то AB = , а BA =

Те же матрицы, для произведения которых справедливо перестанавочное свойство, принято называть коммутирующими.

Среди квадратных матриц выделим класс так называемых диагональных матриц, у каждой из которых элементы, расположенные вне главной диагонали, равны нулю. Среди всех диагональных матриц с совпадающими элементами на главной диагонали особо важную роль играют две матрицы. Первая из этих матриц получается, когда все элементы главной диагонали равны единице, называется единичной матрицей n-ого порядка и обозначается символом E . Вторая матрица получается при всех элементах равных нулю и называется нулевой матрицей n-ого порядка и обозначается символом O. Допустим, что существует произвольная матрица A, тогда

AE = EA = A, AO = OA = O.

Первая из формул характеризует особую роль единичной матрицы Е, аналогичную то роли, которую играет число 1 при перемножении вещественных чисел. Что же касается особой роли нулевой матрицы О, то ее выявляет не только вторая из формул, но и элементарно проверяемое равенство: A + O = O + A = A. Понятие нулевой матрицы можно вводить и не для квадратных матриц.

Ранг матрицы

Рассмотрим прямоугольную матрицу (4.1). Если в этой матрице выделить произвольно k строк и k столбцов, то элементы, стоящие на пересечении выделенных строк и столбцов, образуют квадратную матрицу k -го порядка. Определитель этой матрицы называется минором k-го порядка матрицы А. Очевидно, что матрица А обладает минорами любого порядка от 1 до наименьшего из чисел m и n . Среди всех отличных от нуля миноров матрицы А найдется по крайней мере один минор, порядок которого будет наибольшим. Наибольший из порядков миноров данной матрицы, отличных от нуля, называется рангом матрицы. Если ранг матрицы А равен r , то это означает, что в матрице А имеется отличный от нуля минор порядка r , но всякий минор порядка, большего чем r, равен нулю. Ранг матрицы А обозначается через r(A). Очевидно, что выполняется соотношение

0 ≤ r(A) ≤ min (m,n).

Ранг матрицы находится либо методом окаймления миноров, либо методом элементарных преобразований. При вычислении ранга матрицы первым способом следует переходить от миноров низших порядков к минорам более высокого порядка. Если уже найден минор D k-го порядка матрицы А, отличный от нуля, то требуют вычисления лишь миноры (k+1)-го порядка, окаймляющие минор D, т.е. содержащие его в качестве минора. Если все они равны нулю, то ранг матрицы равен k.

Элементарными называются следующие преобразования матрицы:

1) перестановка двух любых строк (или столбцов),

2) умножение строки (или столбца) на отличное от нуля число,

3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.

Две матрицы называются эквивалентными, если одна из них получается из другой с помощью конечного множества элементарных преобразований.

Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы А и В эквивалентны, то это записывается так:

Канонической матрицей называется матрица, у которой в начале

главной диагонали стоят подряд несколько единиц (число которых

может равняться нулю), а все остальные элементы равны нулю,

например, .

При помощи элементарных преобразований строк и столбцов любую матрицу можно привести к канонической. Ранг канонической матрицы равен числу единиц на ее главной диагонали.

Обратная матрица

Рассмотрим квадратную матрицу

A = .

Обозначим Δ = det A.

Квадратная матрица А называется невырожденной, или неособенной, если ее определитель отличен от нуля, и вырожденной, или особенной, если Δ = 0.

Квадратная матрица В называется обратной для квадратной матрицы А того же порядка, если их произведение А В = В А = Е, где Е - единичная матрица того же порядка, что и матрицы А и В.

Теорема. Для того, чтобы матрица А имела обратную, необходимо и достаточно, чтобы ее определитель был отличен от нуля.

Матрица, обратная матрице А, обозначается через А -1 . Обратная матрица вычисляется по формуле

А -1 = 1/Δ , (4.5)

где А ij - алгебраические дополнения элементов a ij .

Вычисление обратной матрицы по формуле (4.5) для матриц высокого порядка очень трудоемко, поэтому на практике бывает удобно находить обратную матрицу с помощью метода элементарных преобразований (ЭП). Любую неособенную матрицу А путем ЭП только столбцов (или только строк) можно привести к единичной матрице Е. Если совершенные над матрицей А ЭП в том же порядке применить к единичной матрице Е, то в результате получится обратная матрица. Удобно совершать ЭП над матрицами А и Е одновременно, записывая обе матрицы рядом через черту. Отметим еще раз, что при отыскании канонического вида матрицы с целью нахождения ее ранга можно пользоваться преобразованиями строк и столбцов. Если нужно найти обратную матрицу, в процессе преобразований следует использовать только строки или только столбцы.

2. Определители

Для каждой квадратной матрицы определено число, называемое определителем матрицы, детерминантом матрицы или просто определителем (детерминантом).

Определение. Определителем квадратной матрицы первого порядка называется число, равное единственному элементу этой матрицы: A={a}, detA=|A|=a.

Пусть A - произвольная квадратная матрица порядка n, n>1:

Определение Определителем n-го порядка (определителем квадратной матрицы n-го порядка n), n>1, называется число, равное

где - определитель квадратной матрицы полученной из матрицы A вычеркиванием превой строки и j-го столбца.

Для определителей 2-го и 3-го порядка легко получить простые выражения через элементы матрицы.

Определитель 2-го порядка:

Определитель 3-го порядка:

.

2.1. Минор и алгебраическое дополнение элемента

Определение. Минором элемента матрицы называется определитель матрицы, полученной вычеркиванием строки и столбца, в которых расположен элемент. Обозначаем: минор элемента a ij - .

Определение. Алгебраическим дополнением элемента матрицы называется его минор, умноженный на -1 в степени, равной сумме номеров строки и столбца, в которых расположен элемент. Обозначаем: алгебраическое дополнение элемента a ij - .

Таким образом можно переформулировать определение определителя n-го порядка:

определитель n-го порядка, n>1, равен сумме произведений элементов первой строки на их алгебраические дополнения.

Пример.


Теорема о вычислении определителя разложением по любой строке

Теорема. Определитель n-го порядка, n>1, равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения.

Пример. Вычислим определитель из предыдущего примера разложением по второй строке:

Следствие. Определитель треугольной матрицы равен произведению диагональных элементов. (Доказать самостоятельно).