Степени окисления всех веществ. Что такое степень окисления, как определять и расставлять

В химических процессах главную роль играют атомы и молекулы, свойства которых определяют исход химических реакций. Одной из важных характеристик атома является окислительное число, которое упрощает метод учета переноса электронов в частице. Как определить степень окисления или формальный заряд частицы и какие правила необходимо знать для этого?

Любая химическая реакция обусловлена взаимодействием атомов различных веществ. От характеристик мельчайших частиц зависит процесс реакции и ее результат.

Термин окисление (оксидация) в химии означает реакцию, в ходе которой группа атомов или один из них теряют электроны или приобретают, в случае приобретения реакцию называют «восстановлением».

Степень окисления – это величина, которая измеряется количественно и характеризует перераспределяемые электроны в ходе реакции . Т.е. в процессе оксидации электроны в атоме уменьшаются или увеличиваются, перераспределяясь между другими взаимодействующими частицами, и уровень оксидации показывает, как именно они реорганизуются. Данное понятие тесно связано с электроотрицательностью частиц – их умением притягивать и отталкивать от себя свободные ионы.

Определение уровня оксидации зависит от характеристик и свойств конкретного вещества, поэтому нельзя однозначно назвать процедуру вычисления легкой или сложной, но ее результаты помогают условно записать процессы окислительно-восстановительных реакций. Следует понимать, что полученный результат вычислений является результатом учета переноса электронов и не имеет физического смысла, а также не является истинным зарядом ядра.

Важно знать ! Неорганическая химия часто использует термин валентности вместо степени окисления элементов, это не является ошибкой, но следует учитывать, что второе понятие более универсальное.

Понятия и правила вычислений движения электронов являются основой для классификации химических веществ (номенклатура), описания их свойств и составления формул связи. Но наиболее часто данное понятие используется для описания и работы с окислительно-восстановительными реакциями.

Правила определения степени окисления

Как узнать степень окисления? При работе с окислительно-восстановительными реакциями важно знать, что формальный заряд частицы всегда будет равен величине электрона, выраженного в числовом значении. Эта особенность связана с тем предположением, что электронные пары, образующие связь, всегда полностью смещаются в сторону более отрицательных частиц. Следует понимать, что речь идет об ионных связях, а в случае реакции при электроны будут делиться поровну между одинаковыми частицами.

Окислительное число может иметь как положительные, так и отрицательные значения. Все дело в том, что в процессе реакции атом должен стать нейтральным, а для этого нужно либо присоединить к иону некое количество электронов, если он положительный, либо отнять их, если он отрицательный. Для обозначения данного понятия при записи формулы обычно прописывают над обозначением элемента арабскую цифру с соответствующим знаком. Например, или и т.д.

Следует знать, что формальный заряд металлов всегда будет положительным, а в большинстве случаев, чтобы определить его, можно воспользоваться таблицей Менделеева. Существует ряд особенностей, которые необходимо учитывать, чтобы определять показатели правильно.

Степень оксидации:

Запомнив эти особенности, достаточно просто будет определять окислительное число у элементов, независимо от сложности и количества уровней атомов.

Полезное видео: определение степени окисления

Периодическая таблица Менделеева содержит почти всю необходимую информацию для работы с химическими элементами. Например, школьники используют только ее для описания химических реакций. Так, чтобы определить максимальные положительные и отрицательные значения окислительного числа необходимо свериться с обозначением химического элемента в таблице:

  1. Максимально положительное – это номер группы, в которой находится элемент.
  2. Максимально отрицательная степень окисления – это разница между максимально положительной границей и числом 8.

Таким образом, достаточно просто узнать крайние границы формального заряда того или иного элемента. Такое действие можно совершить с помощью вычислений на основе таблицы Менделеева.

Важно знать ! У одного элемента могут быть одновременно несколько различных показателей оксидации.

Различают два основных способа определения уровня оксидации, примеры которых представлены ниже. Первый из них – это способ, который требует знаний и умений применять законы химии. Как расставлять степени окисления с помощью этого способа?

Правило определения степеней окисления

Для этого необходимо:

  1. Определить, является ли данное вещество элементарным и находится ли оно вне связи. Если да, то его окислительное число будет равно 0, независимо от состава вещества (отдельные атомы или многоуровневые атомные соединения).
  2. Определить, состоит ли рассматриваемое вещество из ионов. Если да, то степень оксидации будет равна их заряду.
  3. Если рассматриваемое вещество металл, то посмотреть на показатели других веществ в формуле и вычислить показания металла путем арифметических действий.
  4. Если все соединение имеет один заряд (по сути это сумма всех частиц представленных элементов), то достаточно определить показатели простых веществ, затем вычесть их от общей суммы и получить данные металла.
  5. Если связь нейтральная, то общая сумма должна быть равна нулю.

Для примера можно рассмотреть объединение с ионом алюминия, чей общий заряд равен нулю. Правила химии подтверждают тот факт, что ион Cl имеет окислительное число -1, а в данном случае их три в соединении. Значит ион Al должен быть равен +3, чтобы все соединение было нейтральным.

Этот способ весьма хорош, поскольку правильность решения всегда можно проверить, если сложить все уровни оксидации вместе.

Второй метод можно применять без знания химических законов:

  1. Найти данные частиц, по отношению к которым нет строгих правил и точное количество их электронов неизвестно (можно путем исключения).
  2. Выяснить показатели всех прочих частиц и после из общей суммы путем вычитания найти нужную частицу.

Рассмотрим второй метод на примере вещества Na2SO4, в котором не определен атом серы S, известно лишь, что он отличен от нуля.

Чтобы найти, чему равны все степени окисления необходимо:

  1. Найти известные элементы, помня о традиционных правилах и исключениях.
  2. Ион Na = +1, а каждый кислород = -2.
  3. Умножить количество частиц каждого вещества на их электроны и получить степени оксидации всех атомов, кроме одного.
  4. В Na2SO4 состоят 2 натрия и 4 кислорода, при умножении получается: 2 X +1 = 2 – это окислительное число всех частиц натрия и 4 X -2 = -8 – кислородов.
  5. Сложить полученные результаты 2+(-8) =-6 – это общий заряд соединения без частицы серы.
  6. Представить химическую запись в виде уравнения: сумма известных данных + неизвестное число = общий заряд.
  7. Na2SO4 представлено следующим образом: -6 + S = 0, S = 0 + 6, S = 6.

Таким образом, чтобы использовать второй метод, достаточно знать простые законы арифметики.

Таблица оксидации

Для простоты работы и вычисления показателей оксидации для каждого химического вещества используют специальные таблицы, где прописаны все данные.

Она выглядит следующим образом:

Полезное видео: учимся определять степень окисления по формулам

Вывод

Нахождение степени окисления для химического вещества – это простое действие, которое требует лишь внимательности и знания основных правил и исключений. Зная исключения и пользуясь специальными таблицами, это действие не будет занимать много времени.

Н.П.Танцура

Периодическая система: некоторые теоретические сведения

Главными характеристиками вещества являются его кислотно-основные и окислительно-восстановительные свойства. Именно они определяют, с какими веществами в окружающей среде, химической или биохимической системе, технологической установке будет реагировать рассматриваемое вещество. В пособии уделено большое внимание рассмотрению кислотно-основных свойств веществ и закономерностям их изменения в периодической системе.

В периодической системы (ПС) можно выделить два полюса свойств элементов: металлические и неметаллические. К металлам относят элементы, атомы которых могут только отдавать электроны в химических процессах. При этом степень окисления металлов в образующихся соединениях положительна (+). Неметаллы - это вещества, атомы которых способны как присоединять, так и отдавать электроны, поэтому степени окисления у них могут быть положительными и отрицательными по знаку.

В восьми групповой периодической системе типичные металлы находятся в ее левой части, а неметаллы - в правой верхней части. При этом нарастание металлических свойств по главным подгруппам усиливается сверху вниз, так что самые активные металлы находятся в левом нижнем углу ПС(цезий,франций), а самые типичные неметаллы- в правом верхнем углу ПС (самый активный из них фтор – в переводе с греческого «разрушающий», атом этого элемента может только принимать электрон). Перечислим типичные неметаллы: H , B , C , N , O , F , Si , P , S , Cl , Br , I .

Большинство элементов в ПС (начиная главным образом с IV группы) имеет несколько степеней окисления в соединениях, правила определения максимальных и минимальных значений степеней окисления приведены ниже. Ограниченное количество элементов имеют одну степень окисления в соединениях, наиболее распространенные из них следующие: щелочные металлы и Ag- +1; Be, Mg, Ca, Ba, Sr, Zn, Cd, Hg- +2, Al, Ga - +3

Зная положение элементов IV – VIII групп в ПС, можно указать некоторые степени окисления, которые они могут проявлять в соединениях:

максимальная степень окисления любого элемента (+) =№ группы (у некоторых элементов, например, Fe, Co, Ni , соединения с такими степенями окисления не существуют). Укажем для примера максимальные степени окисления некоторых элементов: N (азот) – V группа (+5); Сr(хром) – VI группа (+6); Cl и Mn –VII группа (+7). Формулы соответствующих оксидов: N 2 O 5 , CrO 3 , Cl 2 O 7 , Mn 2 O 7 .

Минимальная степень окисления для металлов и неметаллов определяется следующим образом:

минимальная степень окисления металла (+) = +1, +2 (IV - VIII группа).

минимальная степень окисления неметалла (-) = № группы-8 (все неметаллы – р-элементы и разность представляет собой число электронов, необходимое для завершения внешнего энергетического уровня атома неметалла). Например, у таких металлов, как хром Cr (VI группа) и Mn (VII группа) минимальные степени окисления составляют +2 и им соответствуют оксиды CrO (неустойчив) и МnO. У неметаллов V группы (N и Р) минимальная степень окисления составляет « -3» (NH 3 , РН 3). Неметаллы VII группы, например хлор Cl, имеет наименьшую степень окисления равную -1 (HCl).

Контрольное задание 1:

    Укажите максимальную и минимальную степень окисления для следующих элементов: S, W, P, Pb. Запишите формулы соответствующих оксидов.

    Укажите атомы неметаллов в периодической системе.

    Определите степени окисления элементов в следующих соединениях:

Сr 2 O 3 , NO 2 , Bi 2 O 5 , K 2 O, Fe 2 O 3 .

Номенклатура неорганических соединений

Международный союз по теоретической и прикладной химии сформулировал общие правила для формирования названий химических соединений – так называемая систематическая международная номенклатура. Она является наиболее строгой, достаточно простой и универсальной; название неорганических соединений строится по следующим правилам:

Если соединение состоит только из двух элементов, то первый называют по - русски (на национальном языке страны), указывая приставками (ди, три, тетра и т.д.) число его атомов. Второй элемент называют по латыни с суффиксом -ид (и соответствующими количественными приставками): например: NaCl - натрий хлорид, BaO - барий оксид, BN –бор нитрид, GaAs – галлий арсенид, N 2 O –диазот оксид, СеO 2 - церий диоксид, S 2 O 3 -дисера триоксид. Аналогично называют гидроксиды металлов: Сa(OH) 2 –кальций дигидроксид (ион ОН - называют в неорганической химии гидроксид-ионом).

Если соединение состоит из трех и более элементов (например, кислородные кислоты, некоторые соли), то кислотный остаток называют справа налево, указывая количество атомов кислорода – оксо, диоксо, триоксо и т.д., а затем по латыни элемент с суффиксом -ат (в скобках записывают римскими цифрами его степень окисления (при условии, элемент имеет несколько значений степеней окисления в соединениях), например:

SiO 3 2- - триоксосиликат ион (метасиликат-ион – полусистематическая номенклатура,

использование которой допустимо);

Na 2 SiO 3 - динатрий триоксосиликат или динатрий метасиликат;

PO 4 3- -тетраоксофосфат(V) или ортофосфат- ион;

АLPO 4 –алюминий тетраоксофосфат(V) , или алюминий ортофосфат;

СО 3 2- - триоксокарбонат-ион (карбонат- ион);

СaCO 3 кальций триоксокарбонат, кальций карбонат;

РО 3 - –триоксофосфат (V) - ион или метафосфосфат- ион;

Zn(PO 3) 2 – цинк триоксофосфат(V) или цинк метафосфат.

В настоящее время в России наиболее широко распространена полусистематическая номенклатура (сведения о систематической общепринятой в мире номенклатуре в школьную программу до сих пор не входят). В технической, особенно старой литературе, часто встречается русская номенклатура, которая уже отменена, кроме того, некоторые соединения имеют тривиальные названия. В качестве примера ниже приведена таблица с названиями различных неорганических соединений.

Абитуриентам, поступившим в высшие учебные заведения необходимо так же знать групповые названия элементов:

щелочные металлы (Li, Na, K, Rb, Cs, Fr); щелочно-земельные металлы (Ca, Sr, Ba, Ra); переходные элементы 3d- ряда (3d-элементы)- Sc……Zn; лантаноиды (редкоземельные элементы) – Сe ……Lu; актиноиды (трансурановые элементы) – Th………Lr ; платиноиды (элементы группы платины)- Ru, Rh, Pd, Os, Ir, Pt; халькогены – O, S, Se, Te; галогены – F, Cl, Br, I, At

Химическая номенклатура

соединения систематическая полусисте- русская тривиальная матическая

НСl водород хлорид хлорид водорода хлористый соляная кислота

водород (водный раствор)

Н 2 SO 4 диводород серная кислота - -

тетраоксосульфат(VI) кислота

HNO 3 водород азотная - -

триоксонитрат (V) кислота

NaOH натрий гидроксид гидроокись едкий

гидроксид натрия натрия натр

Ca(OH) 2 кальций гидроксид гидроокись известковая

дигидроксид кальция кальция вода

NaHS натрий гидросульфид кислый -

водородсульфид натрия сернистый натрий

ZnOHCl цинк хлорид основной -

гидроксид гидроксоцинка хлористый цинк -

CaHPO 4 кальций водород гидрофосфат кислый -

тетраоксофосфат(V) кальция двузамещенный

ортофосфорнокислый кальций

PH 3 фосфор гидрид - фосфин

тригидрид фосфора(III)

АlOHSO 3 алюминий сульфит основной -

гидроксид гидроксоалюминия двузамещенный

триоксосульфат(IV) сернистокислый

алюминий

Классификация неорганических соединений

Все неорганические соединения могут быть разделены на четыре основных класса: оксиды, гидроксиды, бескислородные кислоты и соли. Общая схема такой классификации представлена на рис 1. Эта классификация не является полной, так как в нее не входят различные менее часто встречающиеся бинарные (состоящие из двух элементов) соединения

(например, аммиак-NH 3 , сероуглерод –CS 2 и пр.) за исключением широко распространенного класса бинарных соединений- оксидов.

Оксиды + n -2

Соединения элементов с кислородом вида Э 2 О n называются оксидами (степень окисления атома О в оксидах равна «-2»). Систематическая номенклатура оксидов: на первом месте указывают название элемента в именительном падеже с соответствующими греческими количественными приставками, далее - слово «оксид» также с соответствующими количественными приставками, например:SiO 2 - кремний диоксид,Fe 2 O 3 - дижелезо триоксид,P 2 O 5 - дифосфор пентоксид. Полусистематическая номенклатура: на первом месте записывают слово «оксид», за которым следует название элемента в родительном падеже с указанием римскими цифрами в скобках его степени окисления, например:

Fe 2 O 3 – оксид железа (III);

FeO- оксид железа (II)

P 2 O 3 - оксид фосфора (III);

P 2 O 5 - оксид фосфора (V).

Na 2 O – оксид натрия (натрий имеет только одно значение степени окисления в соединениях, в таких случаях ее не указывают).

Устаревшая русская номенклатура в названиях оксидов оперировала словом «окись» с указанием количества атомов кислорода на один атом элемента, например: N 2 O - полуокись азота, Fe 2 O 3 - полутороокись железа, CO 2 - двуокись углерода. Следует отметить, что в русской номенклатуре оксид элемента с низшей степенью окисления часто называли закисью элемента, а оксид того же элемента с высшей степенью окисления- окисью, например: Сu 2 0- закись меди, CuO- окись меди.

Существуют соединения элементов с кислородом, которые не проявляют свойств оксидов (в этих соединениях атом кислорода имеет степень окисления, которая не равна «-2»). Например, Н 2 О 2 -1 - пероксид водорода (перокись водорода), проявляет свойства слабой кислоты,

Na 2 O 2 -1 - пероксид натрия – соль.

Основные способы получения оксидов

1.Прямое взаимодействие элементов или сложных веществ с кислородом (как правило,окисление происходит при высоких температурах - горение):

2 Mg + O 2 = 2 MgO

УФ или катализатор

2 SO 2 + O 2 = 2 SO 3

СН 4 + 2 О 2 = 2 Н 2 О + СО 2

2.Разложение некоторых солей, оснований и кислот:

CaCO 3 = CaO + CO 2

Mg(OH) 2 = MgO + H 2 O

H 2 CO 3 = CO 2 + H 2 O

2 CuSO 4 = 2 CuO + 2 SO 2 + O 2

3.Образование оксидов некоторых неметаллов при взаимодействии азотной и серной кислоты с металлами и неметаллами:

С + 2 H 2 SO 4 к = CO 2 + 2 SO 2 + 2 H 2 O

Cu + 4 HNO 3 к = Cu(NO 3) 2 + 2 NO 2 + 2 H 2 O

4. Взаимодействие солей неустойчивых кислот (H 2 CO 3 , H 2 SО 4) c сильными кислотами или солей неустойчивых оснований со щелочами:

K 2 CO 3 + 2 HCl = 2 KCl + H 2 O + CO 2

2 AgNO 3 + 2 NaOH = Ag 2 O + H 2 O + 2 NaNO 3

Все оксиды подразделяют на соле- и несолеобразующие или безразличные оксиды (общая схема классификации оксидов приведена на схеме 2). Солеобразующие оксиды могут образовывать соли при многочисленных химических реакциях,например:

СаО + СО 2 = СаСО 3

Солеобразующим оксидам соответствуют гидроксиды, которые образуются при прямом взаимодействии оксидов с водой и их получают косвенным путем, например:

СаО + Н 2 О = Са(ОН) 2

Na 2 O + H 2 O = 2NaOH

Al 2 O 3 + H 2 O ≠

Al 2 O 3 + 6 HCl = 2 AlCl 3 + 3 H 2 O

AlCl 3 +3 NaOH =Al(OH) 3  + 3 NaCl (косвенное получение Al(OH) 3)

SO 3 + H 2 O = H 2 SО 4

SiO 2 + H 2 O ≠

SiO 2 + 2 NaOH = Na 2 SiO 3 + H 2 O

Na 2 SiO 3 + 2 HCl = 2 NaCl + H 2 SiO 3 (косвенное получение H 2 SiO 3)

Солеобразующие оксиды подразделяют по свойствам на три группы: основные (ударение на втором слоге), кислотные и амфотерные.

Основные оксиды – это оксиды металлов с низкими степенями окисления, главным образом, +1,+2 (кроме некоторых амфотерных, например, ZnO, BeO и некоторые другие). К ним следует в первую очередь отнести оксиды щелочных и щелочноземельных металлов, а также оксиды других металлов с низкими степенями окисления (CuO, NiO, CoO, FeO, и т.д.). Следует отметить, что непосредственно взаимодействуют с водой оксиды наиболее активных металлов, а именно, щелочных и щелочноземельных (см. выше).

Доказательством основных свойств оксидов являются реакции:

КИСЛОТА

ОСНОВНОЙ ОКСИД + или ===> СОЛЬ + (Н 2 О)

КИСЛОТНЫЙ

ОКСИД

Например, FeO + 2 HCl = FeCl 2 + H 2 O

Na 2 O + CO 2 = Na 2 CO 3

Кислотные оксиды (ангидриды кислот) характерны для неметаллов (см. перечень выше) с любой степенью окисления и металлов с высокими степенями окисления (от +5 до +8), например, СО 2 , SO 2 , N 2 O 5 , P 2 O 5 , Mn 2 O 7 , CrO 3 , RuO 4 .

Такие оксиды при прямом взаимодействии с водой или с помощью косвенных реакций образуют соответствующие кислородные кислоты. Следует отметить, что непосредственно взаимодействуют с водой почти все оксиды неметаллов, например, газообразные -SO 2 , SO 3 , CO 2, твердые - N 2 O 5 , P 2 O 3 и P 2 O 5 и жидкие (Cl 2 O 7). Не растворяются в воде два оксида неметалла – B 2 O 3 и SiO 2 . Многие оксиды металлов в высших степенях окислениz растворяются в воде, например, CrO 3 , некоторые из них неустойчивы (Mn 2 O 7).

Однако независимо от растворимости оксидов в воде легко формально вывести формулу кислоты, соответствующей данному оксиду:

+ H 2 O + H 2 O

H 2 CrO 4 H 2 B 2 O 4 => HBO 2 (кратные индексы у всех атомов сокращаем).

Приведенные записи не являются химическими реакциями, они представляют собой формальный вывод формулы кислоты, которую желательно знать, т.к. в реакциях солеобразования с участием оксидов, проявляющих кислотные свойства, кислотный остаток соответствующей кислоты входит в состав соли. Приведенный вывод является формальным также по той причине, что многие реакции с участием оксидов протекают в безводной среде, например, в расплаве.

Доказательством кислотных свойств оксидов являются реакции:

ОСНОВАНИЕ

КИСЛОТНЫЙ + или ==> C ОЛЬ + (Н 2 О)

ОКСИД ОСНОВНОЙ

+ H 2 O ОКСИД

к-та (формальный вывод ) , кислотный остаток входит в состав соли.

Например, SO 2 + 2 NaOH = Na 2 SO 3 + H 2 O

Mn 2 O 7 + Ca(OH) 2 = Ca(MnO 4) 2 + H 2 O

+ H 2 O

H 2 Mn 2 O 8  HMnO 4 (формальный вывод), (MnO 4 -1 входит в состав соли).

Амфотерные оксиды проявляют кислотные и основные свойства в зависимости от того, с чем реагируют.

Следует запомнить достаточно часто встречающиеся металлы, оксиды которых обладают ярко выраженными амфотерными свойствами:

Be, Al, Zn, Sn, Pb, Cr (III)….

Этим металлам соответствуют амфотерные оксиды:

BeO, Al 2 O 3 , ZnO, SnO, SnO 2 , PbO, PbO 2 , Cr 2 O 3

Многие металлы характеризуются набором степеней окисления в соединениях (как правило, начиная с IVгр.), при этом, с увеличением степени окисления данного металла в его оксидах и гидроксидах, наблюдается возрастание их кислотных свойств. Например, амфотерные оксиды SnO 2 и PbO 2 обладают более ярко выраженными кислотными свойствами, чем SnO и PbO. У такого важного с технической точки зрения металла, как хром, а так же у многих других металлов существуют оксиды и гидроксиды с различными кислотно-основными свойствами:

CrO Cr 2 O 3 CrO 3

основной амфотерный кислотный

Cr(OH) 2 Cr(OH) 3 H 2 CrO 4

========================================>

кислотные свойства оксидов и гидроксидов возрастают

У всех металлов, для которых существуют подобные ряды оксидов, амфотерными свойствами обладают оксиды и гидроксиды с промежуточными степенями окисления металла. В воде амфотерные оксиды не растворяются.

Доказательством амфотерных свойств оксидов являются, по крайней мере, две противоположные реакции, которые позволяют подтвердить основные и кислотные свойства амфотерного оксида:

КИСЛОТА

или ==========> СОЛЬ + (Н 2 О)

КИСЛОТНЫЙ

АМФОТЕРНЫЙ + ОКСИД

ОКСИД ОСНОВАНИЕ

или ========= C ОЛЬ + (Н 2 О)

ОСНОВНОЙ

ОКСИД

Рассмотрим пример:

ZnO + 2 HCl = ZnCl 2 + H 2 O (1)

основн. св-ва

ZnO + 2 NaOH = Na 2 ZnO 2 + H 2 O (2)

кислот. св-ва

+ H 2 O

H 2 ZnO 2 – цинковая к-та (формальный вывод).

Как будет показано ниже, для растворов реакцию (2) более строго записывают в следующем виде:

ZnO + 2 NaOH + Н 2 О = Na 2 тетрагидроксоцинкат натрия (комплексная соль)

Вывод: амфотерный оксид реагирует со щелочью как кислотный, а с кислотой - как основной, в обоих случаях образуются соли.В том случае, когда амфотерный оксид проявляет основные свойства, металл входит в состав образующейся соли в качестве катиона; при проявлении амфотерным оксидом кислотных свойств, металл входит в состав аниона соли.

БЕЗРАЗЛИЧНЫЕ (НЕСОЛЕОБРАЗУЮЩИЕ) ОКСИДЫ

Число таких оксидов невелико, наиболее распространенные из них следующие: CO, N 2 O, NO, NO 2 .В приведенных выше реакциях солеобразования такие оксиды не участвуют.

ОБОБЩЕНИЕ:

1. Обратим внимание на взаимосвязь кислотно-основных свойств оксидов металлов и неметаллов с величинами их степеней окисления: у неметаллов в оксидах (см. перечень неметаллов выше) возможны следующие значения степеней окисления:

+1 +2 +3 +4 +5 +6 +7

Практически все оксиды неметаллов - кислотные (кроме нескольких безразличных).

Примеры: Cl 2 O, B 2 O 3 , CO 2 , N 2 O 5 , SO 3 , Cl 2 O 7 и т.д.

У металлов могут быть основные, амфотерные и кислотные оксиды и следующие степени окисления металлов в них:

1 +2 +3 +4 +5 +6 +7 +8

________ ____________________

основн. оксиды кислотные оксиды

_______________

амфотерные оксиды

2. Реакции с участием оксидов: при изучении химических свойств оксидов часто возникают проблемы с записью продуктов реакций. В связи с этим рекомендуем внимательно изучить ниже приведенные схемы и выводы из них:

кислотный

основной оксид

оксид + или ========== соли

амфотерный

оксид

(кислотн. св-ва)

+ Н 2 О

к-та - формальный вывод ф-лы кислоты, кислотный остаток

основной входит в состав полученной соли

кислотный оксид

оксид или =========== соли

+ Н 2 О амфотерный

ф-ла кислоты оксид (основные св-ва)

(формальный вывод, кислотный остаток входит в состав полученной соли)

Таким образом основные оксиды могут реагировать с кислотными и амфотерными оксидами и гидроксидами, которые проявляют в таких реакциях кислотные свойства. Кислотные оксиды взаимодействуют с основными и амфотерными оксидами и гидроксидами, которые в этом случае проявляют основные свойства. В любом случае рекомендуем формально прибавить к оксиду, проявляющему кислотные свойства, молекулу воды, вывести формулу кислоты, определить вид и заряд кислотного остатка, который войдет в состав соли. Реакции с амфотерными гидроксидами будут приведены ниже. (Следует иметь в виду, что многие реакции с участием оксидов и гидроксидов практически не протекают в водных растворах из-за плохой растворимости веществ, но могут протекать в расплавах при высоких температурах, такие реакции наблюдаются в природных и технологических процессах).

Как следует из выше изложенного материала при изучении реакций с участием оксидов и гидроксидов важно знать их свойства. С учетом п.п. 1 и 2 обобщений можно предложить следующий алгоритм определения свойств оксидов:

1. Оксид Э 2 О n . Э - металл или неметалл (см. перечень стр.). Если Э - неметалл оксид кислотный (безразличные оксиды необходимо помнить).

2.Э-металл - оксид может быть основным, амфотерным и кислотным. Рекомендуем посмотреть перечень наиболее часто встречающихся амфотерных оксидов (если элемент не входит в приведенный перечень, но возникают сомнения относительно его свойств, можно посмотреть в учебнике степени окисления данного металла в соединениях, при наличии у него трех и более степеней окисления промежуточные оксиды будут амфотерными).

3.Оксид металла – неамфотерный, тогда:

ст.ок. Ме высокие (> +5) ст.ок. Ме невысокие (<+2)

оксид - кислотный; оксид - основной (амфотерные – исключены)

Рассмотрим примеры:

FeO + N 2 O 5 = Fe(NO 3) 2

кислотный

+H 2 O

H 2 N 2 O 6 ==> HNO 3

2 NaOH + CrO 3 = 2 Na 2 CrO 4 + H 2 O

кислотный

+H 2 O

H 2 CrO 4 - хромовая кислота

Ba(OH) 2 + Al 2 O 3 = Ba(AlO 2) 2 + H 2 O

амфот.(кислот.св-ва)

+ H 2 O

H 2 Al 2 O 4 ==> HАlO 2 – метаалюминиевая кислота

Контрольное задание 2:

1. Приведите примеры солеобразующих и несолеобразующих оксидов. В чем состоит различие между ними?

2. Какие оксиды называются основными, кислотными и амфотерными? По каким свойствам оксиды можно отнести к той или иной группе?

3. Дайте названия следующим оксидам, используя все виды номенклатур:

Li 2 O, BeO, FeO, Fe 2 O 3 , MnO, MnO 2 , Mn 2 O 7 , WO 3 , P 2 O 5 , CO, CO 2 .

4. Даны оксиды: оксид кремния (IV), оксид магния, оксид свинца (II) и оксид хрома (VI), оксид хрома (III), оксид олова (IV), оксид бора. Определив свойства оксидов, записать возможные реакции с азотной кислотой HNO 3 и КОН.

5. Дописать реакции: оксид хлора (I) + оксид магния; оксид углерода (IV) + оксид алюминия; гидроксид калия + оксид берилия; гидроксид железа (III) + оксид азота (III); оксид алюминия + оксид натрия;

6. Даны оксиды: оксид серы (IV), оксид магния, оксид цинка и оксид марганца (VII). Какие пары оксидов могут взаимодействовать друг с другом, запишите реакции.

7.Укажите свойства оксидов: MnO, MnO 2 , Mn 2 O 7 , запишите формулы соответствующих им гидроксидов.

8.Приведите примеры химических реакций, доказывающих амфотерный характер оксида хрома (III) 3 .

9.Могут ли взаимодействовать между собой и почему следующие оксиды: ZnO и FeO, Na 2 O и ZnO, N 2 O 5 и MgO, Cl 2 O 7 и СO 2 , P 2 O 5 и K 2 O?. Напишите уравнения возможных реакций.

10.Каким образом, зная химические свойства оксидов, очистить FeO от примесей K 2 O и ZnO (используйте воду, кислоту или щелочь)?

11.Какие из нижеперечисленных оксидов можно растворить в кислотах, а какие – в щелочах: Cs 2 O, CaO, GeO 2 , N 2 O 3 ? Запишите уравнения cоответствующих реакций.

13.У какого оксида сильнее выражены кислотные свойства: SnO 2 или PbO 2 ?

14. Какие из приведенных оксидов растворяются в воде, запишите реакции: оксид бора, оксид алюминия, оксид азота (V), оксид железа (II), оксид серы (IV), оксид калия, оксид магния.

Для характеристики окислительно-восстановительной способности частиц важное значение имеет такое понятие, как степень окисления. СТЕПЕНЬ ОКИСЛЕНИЯ – это заряд, который мог бы возникнуть у атома в молекуле или ионе, если бы все его связи с другими атомами оказались разорваны, а общие электронные пары ушли с более электроотрицательными элементами.

В отличие от реально существующих зарядов у ионов, степень окисления показывает лишь условный заряд атома в молекуле. Она может быть отрицательной, положительной и нулевой. Например, степень окисления атомов в простых веществах равна «0» (,
,,). В химических соединениях атомы могут иметь постоянную степень окисления или переменную. У металлов главных подгруппI, II и III групп Периодической системы в химических соединениях степень окисления, как правило, постоянна и равна соответственно Ме +1 , Ме +2 и Ме +3 (Li + , Ca +2 , Al +3). У атома фтора всегда -1. У хлора в соединениях с металлами всегда -1. В подавляющем числе соединений кислород имеет степень окисления -2 (кроме пероксидов, где его степень окисления -1), а водород +1(кроме гидридов металлов, где его степень окисления -1).

Алгебраическая сумма степеней окисления всех атомов в нейтральной молекуле равна нулю, а в ионе – заряду иона. Эта взаимосвязь позволяет рассчитывать степени окисления атомов в сложных соединениях.

В молекуле серной кислоты H 2 SO 4 атом водорода имеет степень окисления +1, а атом кислорода -2. Так как атомов водорода два, а атомов кислорода четыре, то мы имеем два «+» и восемь «-». До нейтральности не хватает шесть «+». Именно это число и является степенью окисления серы -
. Молекула дихромата калияK 2 Cr 2 O 7 состоит из двух атомов калия, двух атомов хрома и семи атомов кислорода. У калия степень окисления всегда +1, у кислорода -2. Значит, мы имеем два «+» и четырнадцать «-». Оставшиеся двенадцать «+» приходятся на два атома хрома, у каждого из которых степень окисления равна +6 (
).

Типичные окислители и восстановители

Из определения процессов восстановления и окисления следует, что, в принципе, в роли окислителей могут выступать простые и сложные вещества, содержащие атомы, которые находятся не в низшей степени окисления и поэтому могут понижать свою степень окисления. Аналогично в роли восстановителей могут выступать простые и сложные вещества, содержащие атомы, которые находятся не в высшей степени окисления и поэтому могут повышать свою степень окисления.

К наиболее сильным окислителям относятся:

1) простые вещества, образуемые атомами, имеющими большую электроотрицательность, т.е. типичные неметаллы, расположенные в главных подгруппах шестой и седьмой групп периодической системы: F, O, Cl, S (соответственно F 2 , O 2 , Cl 2 , S);

2) вещества, содержащие элементы в высших и промежуточных

положительных степенях окисления, в том числе в виде ионов, как простых, элементарных (Fe 3+), так и кислородосодержащих, оксоанионов (перманганат-ион - MnO 4 -);

3) перекисные соединения.

Конкретными веществами, применяемыми на практике в качестве окислителей, являются кислород и озон, хлор, бром, перманганаты, дихроматы, кислородные кислоты хлора и их соли (например,
,
,
), азотная кислота (
), концентрированная серная кислота (
), диоксид марганца (
), пероксид водорода и пероксиды металлов (
,
).

К наиболее сильным восстановителям относятся:

1)простые вещества, атомы которых имеют низкую электроотрицательность («активные металлы»);

2) катионы металлов в низжих степенях окисления (Fe 2+);

3) простые элементарные анионы, например, сульфид-ион S 2- ;

4) кислородосодержащие анионы (оксоанионы), соответствующие низшим положительным степеням окисления элемента (нитрит
, сульфит
).

Конкретными веществами, применяемыми на практике в качестве восстановителей, являются, например, щелочные и щелочноземельные металлы, сульфиды, сульфиты, галогенводороды (кроме HF), органические вещества – спирты, альдегиды, формальдегид, глюкоза, щавелевая кислота, а также водород, углерод, моноксид углерода (
) и алюминий при высоких температурах.

В принципе, если в состав вещества входит элемент в промежуточной степени окисления, то эти вещества могут проявлять как окислительные, так и восстановительные свойства. Все зависит от

«партнера» по реакции: с достаточно сильным окислителем оно может реагировать как восстановитель, а с достаточно сильным восстановителем – как окислитель. Так, например, нитрит-ион NO 2 - в кислой среде выступает в роли окислителя по отношению к иону I - :

2
+ 2+ 4HCl→ + 2
+ 4KCl + 2H 2 O

и в роли восстановителя по отношению к перманганат-иону MnO 4 -

5
+ 2
+ 3H 2 SO 4 → 2
+ 5
+K 2 SO 4 + 3H 2 O

При изучении ионной и ковалентной полярной химической связи вы знакомились со сложными веществами, состоящими из двух химических элементов. Такие вещества называют би парными (от лат. би — «два») или двухэлементными.

Вспомним типичные бпнарные соединения, которые мы привели в качестве примера для рассмотрения механизмов образования ионной и ковалентноЙ полярной химической связи : NaHl — хлорид натрия и НСl — хлороводород. В первом случае связь ионная: атом натрия передал свой внешний электрон атому хлора и превратился при этом в ион с зарядом -1. а атом хлора принял электрон и превратился в ион с зарядом -1. Схематически процесс превращения атомов в ионы можно изобразить так:

В молекуле же НСl связь образуется за счет спаривания не-спаренных внешних электронов и образования общей электронной пары атомов водорода и хлора.

Правильнее представлять образование ковалентной связи в молекуле хлороводорода как перекрывание одноэлектронного s-облака атома водорода с одноэлектронным p-облаком атома хлора:

При химическом взаимодействии общая электронная пара смещена в сторону более электроотрицательного атома хлора:

Такие условные заряды называются степенью окисления . При определении этого понятия условно предполагают, что в ковалентных полярных соединениях связующие электроны полностью перешли к более электроотрицательному атому, а потому соединения состоят только из положительно и отрицательно заряженных ионов.

— это условный заряд атомов химического элемента в соединении, вычисленный на основе предположения, что все соединения (и ионные, и ковалентно-полярные) состоят только из ионов.

Степень окисления может иметь отрицательное, положительное или нулевое значения, которые обычно ставятся над символом элемента сверху, например:

Отрицательное значение степени окисления имеют те атомы, которые приняли электроны от других атомов пли к которым смещены общие электронные пары, то есть атомы более электроотрицательных элементов. Фтор всегда имеет степень окисления -1 во всех соединениях. Кислород , второй после фтора по значению элекгроотрицательности элемент, почти всегда имеет степень окисления -2, кроме соединений со фтором, например:

Положительное значение степени окисления имеют те атомы, которые отдают свои электроны другим атомам или от которых оттянуты общие электронные пары, то есть атомы менее электроотрицательных элементов. Металлы всегда имеют положительную степень окисления. У металлов главных подгрупп:

I группы во всех соединениях степень окисления равна +1,
II группы равна +2. III группы — +3, например:

В соединениях суммарная степень окисления всегда равна нулю. Зная это и степень окисления одного из элементов, всегда можно найти степень окисления другого элемента по формуле бинарного соединения. Например, найдем степень окисления хлора в соединении Сl2О2. Обозначим степень окисления -2
кислорода: Сl2О2. Следовательно, семь атомов кислорода будут иметь общий отрицательный заряд (-2) 7 =14. Тогда общий заряд двух атомов хлора будет равен +14, а одного атома хлора:
(+14):2 = +7.

Аналогично, зная степени окисления элементов, можно составить формулу соединения, например карбида алюминия (соединения алюминия и углерода). Запишем знаки алюминия н углерода рядом АlС, причем сначала знак алюминия, так как это металл. Определим по таблице элементов Менделеева число внешних электронов: у Аl — 3 электрона, у С — 4. Атом алюминия отдаст свои 3 внешних электрона углероду и получит при этом степень окисления +3, равную заряду иона. Атом углерода, наоборот, примет недостающие до "заветной восьмерки" 4 электрона и получит при этом степень окисления -4.

Запишем эти значения в формулу: АlС, и найдем наименьшее общее кратное для них, оно равно 12. Затем рассчитаем индексы:

Знать степени окисления элементов необходимо и для того, чтобы уметь правильно называть химическое соединение.

Названия бинарных соединений состоят из двух слов — названий образующих их химических элементов. Первое слово обозначает электроотрицательную часть соединения — неметалл, его латинское название с суффиксом -ид стоит всегда в именительном падеже. Второе слово обозначает электроположительную часть — металл или менее электроотрицательный элемент, его название всегда стоит в родительном падеже. Если же электроположительный элемент проявляет разные степени окисления, то это отражают в названии, обозначив степень окисления римской цифрой, которая ставится в конце.

Чтобы химики разных стран понимали друг друга, потребовалось создание единой терминологии и номенклатуры веществ. Принципы химической номенклатуры были впервые разработаны французскими химиками А. Лавуазье, А.Фурктуа, Л.Гитоном и К.Бертолле в 1785г. В настоящее время Международный союз теоретической и прикладной химии (ИЮПАК) координирует деятельность ученых рядных стран и издает рекомендации по номенклятурс веществ и терминологии, используемой к химии.

Степень окисления. Определение степени окисления атома элемента по химической формуле соединения. Составление формулы соединения по известным степеням окисления атомов элементов

Степень окисления элемента — это условный заряд атома в веществе, исчисленный с предположением, что она состоит из ионов. Для определения степени окисления элементов необходимо запомнить определенные правила:

1. Степень окисления может быть положительным, отрицательным или равным нулю. Он обозначается арабской цифрой со знаком «плюс» или «минус» над символом элемента.

2. При определении степеней окисления исходят из электроотрицательности вещества: сумма степеней окисления всех атомов в соединении равна нулю.

3. Если соединение образована атомами одного элемента (в простой веществе), то степень окисления этих атомов равен нулю.

4. Атомам некоторых химических элементов обычно приписывают стали степени окисления. Например, степень окисления фтора в соединениях всегда равна -1; лития, натрия, калия, рубидия и цезия +1; магния, кальция, стронция, бария и цинка +2, алюминия +3.

5. Степень окисления водорода в большинстве соединений +1, и только в соединениях с некоторыми металлами он равен -1 (KH, BaH2).

6. Степень окисления кислорода в большинстве соединений -2, и лишь в некоторых соединениях ему приписывают степень окисления -1 (H2O2, Na2O2 или +2 (OF2).

7. Атомы многих химических элементов оказывают переменные степени окисления.

8. Степень окисления атома металла в соединениях положительный и численно равна его валентности.

9. Максимальный положительный степень окисления элемента, как правило, равна номеру группы в периодической системе, в которой находится элемент.

10. Минимальная степень окисления для металлов равна нулю. Для неметаллов в большинстве случаев ниже отрицательный степень окисления равна разнице между номером группы и цифрой восемь.

11. Степень окисления атома образует простой ион (состоит из одного атома), равна заряду этого иона.

Пользуясь приведенным правилам, определим степени окисления химических элементов в составе H2SO4. Это сложное вещество, состоящее из трех химических элементов — водорода Н, серы S и кислорода О. Отметим степени окисления тех элементов, для которых они являются постоянными. В нашем случае это водород Н и кислород О.

Определим неизвестный степень окисления серы. Пусть степень окисления серы в этой соединении равно х.

Составим уравнения, умножив для каждого элемента его индекс в степень окисления и добытую сумму приравняем к нулю: 2 · (+1) + x + 4 · (-2) = 0

2 + X — 8 = 0

x = +8 — 2 = +6

Следовательно, степень окисления серы равна плюс шесть.

В следующем примере выясним, как можно составить формулу соединения с известными степенями окисления атомов элементов. Составим формулу феррум (III) оксида. Слово «оксид» означает, что справа от символа железа надо записать символ кислорода: FeO.

Отметим степени окисления химических элементов над их символами. Степень окисления железа указана в названии в скобках (III), следовательно, равна +3, степень окисления кислорода в оксидах -2.

Найдем наименьшее общее кратное для чисел 3 и 2, это 6. Разделим число 6 на 3, получим число 2 — это индекс для железа. Разделим число 6 на 2, получим число 3 — это индекс для кислорода.

В следующем примере выясним, как можно составить формулу соединения с известными степенями окисления атомов элементов и зарядами ионов. Составим формулу кальций ортофосфата. Слово «ортофосфат» означает, что справа от символа Кальция надо записать кислотный остаток ортофосфатнои кислоты: CaPO4.

Отметим степень окисления кальция (правило номер четыре) и заряд кислотного остатка (по таблице растворимости).

Найдем наименьшее общее кратное для чисел 2 и 3, это 6. Разделим число 6 на 2, получим число 3 — это индекс для кальция. Разделим число 6 на 3, получим число 2 — это индекс для кислотного остатка.