Они проникают в мозг: опыты на людях. Не глаза видят, а мозг

Др.Ховард Гликсмен

Зрение – это сложный процесс. Первая статья этого цикла рассматривала, каким образом глаз может разрешать свету проходить через него и фокусироваться на сетчатке. Последующая публикация подробно описала процесс генерирования сетчаткой нервных импульсов, которые перемещаются к мозгу для интерпретации «зрения».

В этой статье мы будем рассматривать, как зрительные сообщения распределяются и организовываются в пределах мозга для воссоздания нейровозбуждающего пространственного изображения в целях анализа.

Мозг является центральным устройством обработки данных, который интерпретирует все неврологические сообщения, что поступают со всего тела. Глаз представляет собой внешнее устройство подобно любому другому чувствительному органу тела. Он находиться в углублении, проводя исследования для мозга. Под центральной слепотой подразумевается состояние, когда глаза хорошо работают, но именно мозг не производит правильной обработки данных зрительной информации.

Обнаружение пути

Каждый оптический нерв состоит из примерно миллиона аксонов, которые идут от ганглиозных клеток. Не забывайте, что ганглиозные клетки просто переносят сообщения, которые они получают от биполярных клеток, а те, в свою очередь, от палочек и колбочек. Это можно уподобить огромной нейробиомолекулярной эстафете, конечная цель которой – достичь визуального центра мозга, где определенная пространственная модель нервного возбуждения, в итоге, обрабатывается и интерпретируется как «зрение».

Около 80% аксонов от ганглиозных клеток в оптическом нерве направляются к распределительной коробке мозга, которая называется боковым коленчатым телом. В этом соединительном нервном центре каждый ганглиозный аксон передает дальше свои сообщения с помощью высвобождения нейротрансмитера, который побуждает другой нейрон передавать дальше это сообщение к зрительной зоне коры головного мозга.

Оставшиеся 20% аксонов ганглиозных клеток меняют свое направление как раз перед распределительной коробкой, объединяясь с другой системой, которая несет ответственность за некоторые автоматические рефлексы, происходящие в глазе. Когда свет проникает в глаз (освещает его), это приводит к тому, что зрачок, сокращаясь, становится меньше, а когда, к примеру, в темной комнате, света становиться мало, зрачок автоматически расширяется, чтобы пропустить больше света. Именно эти сообщения от ганглиозных клеток и начинают рефлексную дугу, которая порождает эти действия.

Что происходит первым?!

Сейчас, после рассмотрения всего вышеизложенного, нам следует перейти к вопросу о том, куда перемещаются ганглиозные аксоны, несущие сообщения из сетчатки? Кажется целесообразным, чтобы все сообщения из одного глаза направлялись бы в одну зону зрительной коры, а все остальные с другого глаза - в другую, не так ли? В противном случае, как может мозг интерпретировать все эти сообщения, если они смешаны? Чтобы понять, что же именно происходит, и как это влияет на наше зрение, нам сначала нужно рассмотреть, как хрусталик влияет на изображения, которые он преломляет, а также предоставить вам общую схему для дискуссии о зрении.

Полное изменение реальности: фокусирование побочных эффектов.

Рассмотрим природу изображения, которое проектируется на сетчатке после того, как лучи света перемещаются через глаз. Если вы когда-либо игрались с линзами, то вы должны помнить, что каждый раз, когда лучи света проходят сквозь криволинейную поверхность, то они не только преломляются, но и изображение с другой стороны становится полностью перевернутым.

Следовательно, когда мы рассматриваем то, что происходит с изображением света, когда оно проходит сквозь глаз, мы должны принять во внимание тот факт, что свет проходит три отдельных преломления. Первое преломление происходит, когда свет пересекает роговицу. На этой стадии, изображение было бы совершенно перевернутым, это означает, что оно было бы повернутым и перевернутым вверх дном. Но не забывайте, что свету все еще нужно пройти сквозь хрусталик, пока он не переместится в сетчатку.

У хрусталика есть две выпуклые поверхности в противоположность одной у роговицы. Изображение, проходя сквозь переднюю поверхность хрусталика, снова приводится в порядок. Но потом оно дальше преломляется, поскольку проходит сквозь заднюю поверхность хрусталика, в результате чего возникает конечное изображение на сетчатке, которое является повернутым и перевернутым вверх дном. (см. рис. 1)

Вы можете подумать о том, как это может влиять на наше зрение? Не забывайте, что клетки фоторецепторов сетчатки просто посылают изображение в мозг на основе света, что отражает объект, на который мы смотрим. Следовательно, если изображение само по себе было перевернуто, то есть повернуто вверх дном, то сообщение, посылаемое из сетчатки в мозг, будет также отражать это. А уже дело мозга - расшифровывать это зеркальное электрическое сообщение, которое посылается из глаз.

Для того, чтобы понять последующее обсуждение, для нас важно усвоить некоторые термины относительно зрительных полей и областей сетчатки. Зрительные поля каждого глаза (рассматриваемого) могут разделяться вертикально на правые и левые поля. Похожим способом, сетчатка каждого глаза (проводящая наблюдение) может также разделяться на правые и левые области, проводя воображаемую линию сверху глаза вниз через ямку. (К тому же, каждое поле и область сетчатки также может разделяться на верхнюю и нижнюю половинки).

Но, поскольку каждый глаз уже обозначается как «правый» и «левый», то было бы неудобно для исследователей называть зрительные поля или каждую область сетчатки глаз также как «правые» и «левые». Таким образом, нам необходим лучший способ четкого различения между зрительным полем, которое рассматривается, частью сетчатки, которая производит рассматривание и глаза, где это происходит.

Височная кость является внешней границей каждого глаза, то есть, слева для левого глаза и справа для правого. Подобным образом, нос является внутренней границей для каждого глаза, т.е. справа для левого глаза и слева для правого. Следовательно, каждая вертикальная половина поля зрения называется либо височной, либо носовой частью.

Височное поле зрения левого глаза является дальней левой половинкой поля, а височная часть правого глаза - дальней правой половиной поля. Похожим образом, носовое зрительное поле левого глаза - это внутреннее или правое полуполе, а носовое зрительное поле правого глаза есть внутреннее или левое полуполе. (см. рис.2)

Рис 1.

Подобным образом, когда мы обсуждаем сетчатку, то в основном имеем в виду ее расположение в глазе. Поэтому височная сетчатка левого глаза находится с внешней стороны или левой задней части яблока глаза, а носовая сетчатка левого глаза расположена с внутренней стороны или правой части поля сетчатки в левом глазу. Так же, височная сетчатка правого глаза находится с внешней стороны или правой задней части яблока глаза, а носовая сетчатка правого глаза расположена с внутренней стороны или левой части поля сетчатки в правом глазу.

Рис 2. Зрительные поля

Что происходит во-вторых?!

Когда мы рассматриваем взаимоотношение между тем, что видно в пределах визуальной области отдельного глаза и где его изображение находится на сетчатке глаза, мы должны иметь в виду, что изображение будет повернуто и перевернуто вверх дном. Поэтому, что бы ни находилось в височном поле видимости любого глаза, оно всегда будет отображаться на носовой сетчатке и что бы ни находилось в носовом поле видимости в любом глазу, оно всегда будет изображаться на височной сетчатке. (Что бы ни рассматривалось в верхнем поле, оно будет отображаться на нижнем поле, а что бы ни рассматривалось в нижнем поле, оно будет изображаться на высшей части сетчатки).

Все дело в перспективе

Еще одна важная вещь, которую нужно помнить о зрении, может быть продемонстрирована следующим упражнением. Если вы сосредоточитесь на объекте, а затем переменно посмотрите на него каждым глазом, вы заметите, что есть существенное наложение между носовыми полями каждого глаза, немного под другим углом. Это означает, что, когда вы сосредотачиваете свой взгляд на чем-то, то глаз способен пересылать сообщения к мозгу, которые дают ему две различные перспективы. Вот таким образом мы можем достигать своего восприятия глубины.

Расколотый экран: пересекание нейробиомолекулярных путей

Теперь, когда вы понимаете этот аспект нашего зрения, мы можем продолжить обсуждение того, куда сообщения идут в мозге. В действительности, если вы представляете себе вертикальную линию, проходящую через ямку глаза, то все фоторецепторы с правой стороны в обоих глазах (т.е. носовая сетчатка в левом глазу и височная сетчатка в правом глазу) посылают свои сообщения ганглиозным клеткам, которые посылают свои аксоны в правую сторону мозга.

Подобным образом, все клетки фоторецепторов слева от ямки в обоих глазах (т.е. височная сетчатка в левом глазу и носовая сетчатка в правом) посылают свои сообщения ганглиозным клеткам, которые направляют свои аксоны в левую сторону мозга.

Чтобы все это происходило, все сообщения от височной сетчатки правого и левого глаза остаются соответственно на правой и на левой стороне мозга. В то время как все сообщения от носовой сетчатки как правого, так и левого глаза, должны переправляться соответственно к левой и правой сторонам мозга. Все это пересекается в месте, что называется перекрестом зрительных нервов. (См. рис. 3)


Рис 3.

Если вы помните, какая половина сетчатки «видит» какое визуальное поле, вы осознаете, что все, что находится в левой половине визуального поля обоих глаз, направляется в правую сторону мозга, а все, что находится в правой половине визуальной области обоих глаз направляется в левую сторону мозга. Помните, я говорил о том, что поскольку изображение, которое проходит сквозь глаз, является перевернутым в результате совместных эффектов роговой оболочки и хрусталика, все, что находится в височном поле, будет изображаться на носовой сетчатке, а все, что в носовом поле, будет изображаться на височной сетчатке.

Это означает, что все, что в левом полуполе левого глаза, будет изображаться на носовой или правой половине сетчатки левого глаза. Но мы уже обсуждали, что все сообщения от носовой сетчатки переходят с левой стороны мозга в правую. Так, что визуальные сообщения, которые являются результатом левой половины поля зрения левого глаза, стимулируя его носовую сетчатку, будут посылаться в правую визуальную кору головного мозга. Зрение левой половины изображения направляется в правую часть мозга.

Таким же образом, что-либо в височном или правом полуполе правого глаза будет изображаться на носовой или левой половине сетчатки правого глаза. Но опять же, мы знаем, что все сообщения от носовой сетчатки правого глаза пересекают мозг к левой стороне. Так что в данном случае визуальные сообщения правой половины поля зрения правого глаза, активизируя его носовую сетчатку, будут посылаться в левую визуальную кору головного мозга. Зрение правой половины направляется в левую часть мозга. (См. рис.3)

Если мы посмотрим на носовые поля, мы увидим, что происходит то же самое. Что-нибудь в носовом или правом поле левого глаза будет изображаться на височной или левой половине сетчатки левого глаза. Хотя мы знаем, что все сообщения от височной сетчатки остаются на той же стороне.

Таким образом, в данном случае сообщения из левой височной сетчатки будут посылаться в левую часть мозга. Опять же, правая половинка зрительного поля направляется в левую часть мозга.

В конечном итоге, что-либо в носовом или левом поле правого глаза будет изображаться на височной или правой половине правой сетчатки. Изображения от височной сетчатки остаются на той же стороне, то есть они будут посылаться в правую часть мозга. Итак, левая часть поля опять очутиться в правой половине мозга.

Я не знаю, что происходит в-третьих!

Когда мозг принимает эти повернутые, перевернутые вверх дном и пересекающиеся скопления импульсов, воспроизводимых фотонами, которые зародились в сетчатке и идут к затылочным долям сквозь биполярные клетки, ганглиозные клетки, боковое коленчатое тело головного мозга, тогда и производит то, что мы называем «зрением».

Никто в действительности не может точно понять, как мы можем видеть. Это то же самое, что задать вопрос, что же является нейробиомолекулярной основой для определенной мысли, желания или эмоции.

Возможно, мы можем выяснить, в какой части мозга эти процессы происходят, с помощью каких нейротрансмитеров и в каких концентрациях, и с какими другими нейронами происходят реакции. Но мы все еще точно не понимаем, как эти процессы проявляются в особенных восприятиях, таких как зрение.

Мы не понимаем того, как мы можем думать. Философ Габриель Марсел определил эту загадку так: «проблема, которая посягает на свои собственные данные». Он подразумевал, что тот, кто задает этот вопрос, невольно становиться объектом вопроса. Человеческий мозг пробует выяснить, как он сам работает.

Эволюционная простота?

Обзор этой и двух последних статьей ясно демонстрируют:

  • Чрезвычайную сложность и физиологическую взаимозависимость многих частей глазного яблока;
  • Абсолютную необходимость того, чтобы многие специфические биомолекулы реагировали в четко правильном порядке для передачи клетками фоторецепторов и другими нейронама нервных импульсов в мозг;
  • Важность присутствия для обеспечения фокусировки роговицей и хрусталиком не только глазного яблока правильного размера, но и области в сетчатке (ямки), которая снабжена необходимой концентрацией клеток фоторецепторов, связанных с мозгом в пропорции 1:1:1 для ясного и четкого зрения;
  • Зрение зависит от множества сложных, повернутых, перевернутых вверх дном, разделенных и накладывающихся сообщений от более двух миллионов волокон оптического нерва, которые направляются к зрительной зоне коры головного мозга, создавая нейровозбуждающее пространственное изображение, интерпретируемое как зрение;
  • Что исследователи не знают то, как мозг выполняет зрение.

Надеюсь, что все вышеизложенное побудит людей задуматься перед тем, как они примут теорию макроэволюции и начнут применять ее к развитию человеческого глаза и зрения. Как можно быть таким уверенным относительно теории происхождения чего-либо, когда еще не выяснено, как оно фактически работает? Большинство из прочитанного мной у сторонников эволюции на тему зрения, содержит много риторики и предположений без приведения деталей и логической последовательности. Все это выглядит несколько преждевременно и самонадеянно.

Наука пока не обладает инструментами, с помощью которых можно сделать определенный вывод об эволюции глаз и зрения. Будет ли она их когда-либо иметь? Может да, а может, нет. До этого времени, я сохраняю право смотреть на эволюционные объяснения биологов о происхождении человеческого зрения с большой долей скептицизма, как на чрезмерно упрощенные и требующие большого количества слепой веры.

В следующем раз мы будем рассматривать ухо и слух. Это даст нам больше поводов для удивления и больше вопросов для раздумий над макроэволюцией.

Доктор Ховард Гликсмен окончил университет в Торонто в 1978 году. Он практиковал медицину почти 25 лет в г. Оквилле, Онтарио и Спринг Хилл, Флорида. Недавно д-р Гликсмен оставил свою частную практику и начал практиковать паллиативную медицину для хосписа в своей общине. У него особый интерес к влиянию достижений современной науки на характер нашей культуры, а также к продвижению исследований на тему: "Что означает быть человеком?"

Видеть мозгом

Научные тесты выявили «внутренне зрение» в мозге незрячего художника из Турции Эсрефа Армагана, который с рождения не видит даже света, сообщает британский журнал «Нью сайентист».

Художник с поразительной реалистичностью рисует дома, животных и пейзажи, которые он никогда в жизни не видел, однако сканирование головного мозга Армагана показало, что в процессе рисования «включается» зрительная область его коры почти в такой же степени, как и у зрячего человека. Иными словами, слепой может представить себе тот или иной образ так, как будто он когда-то его видел воочию. Причем, эти зрительные образы он помнит и может воспроизвести годы спустя.

Тестирование Армагана проводились в США, уточняет «Нью сайентист». Картины феноменальный художник рисует пальцами рук, используя собственную уникальную художественную технику – он накладывает на холст краску одного цвета, а затем после ее полного высыхания – по очереди идут в ход другие цвета. Сначала Армаган делает набросок: он проводит клинышком по поверхности холста, оставляющим неглубокую канавку, которую мастер тут же прощупывает пальцами и проверяет правильность нарисованных форм.

Ощущение цвета, как отмечает журнал, было достигнуто художником путем простого запоминания соответствий со слов зрячих людей. К примеру, Армаган раньше думал, что если предмет красный, то и тень от него должна быть такого же цвета. Только из объяснений со стороны он запомнил, что небо должно быть голубым, море синим, а трава – зеленой.

Эсрефу Армагану сейчас 51 год. Он родился в бедной семье в Стамбуле, не мог ходить в школу, и никто специально не учил его рисовать. В шесть лет Эсреф сам взял в руки карандаш, а с 18 лет стал писать масляными красками с помощью пальцев. В 42 года художник перешел на быстро засыхающую гуашь. Благодаря своим картинам Армаган прославился не только в Турции, но и получил известность за рубежом, отмечает «Нью сайентист».

Видение мозгом

Человек видит мозгом, а не глазами.

По материалам: Washington ProFile.

Исследователи из University of Rochester обнаружили, что у разных людей серьезно различается количество рецепторов-колбочек в сетчатке глаза, отвечающих за восприятие цвета. У одних людей колбочек в 40 раз больше, чем у других. Из-за этого, люди по-разному воспринимают цветовые оттенки.

Другой вывод исследования: человек воспринимает цвета не с помощью глаз, а, в основном, с помощью мозга. Причины этого пока не ясны. Статью об этом открытии опубликовал журнал Neuroscience.

Видение мозгом

Система Зрения: Что видит мозг?

Др. Ховард Гликсмен.

Зрение – это сложный процесс. Два месяца назад мы рассмотрели, как глаз может разрешать свету проходить через него и фокусироваться на сетчатке. Затем в предыдущем месяце мы подробно описали, как сетчатка может генерировать нервные импульсы, которые перемещаются к мозгу для интерпретации «зрения».

В этом раз мы рассматриваем, как эти зрительные сообщения распределяются и организовываются в пределах мозга для того, чтобы создать нейровозбуждающее пространственное изображение для анализа.

Мозг является центральным устройством обработки данных, который интерпретирует все неврологические сообщения, что поступают со всего тела. Глаз представляет собой внешнее устройство подобно любому другому чувствительному органу тела. Он находиться в углублении, проводя исследования для мозга. Под центральной слепотой подразумевается состояние, когда глаза хорошо работают, но именно мозг не производит правильной обработки данных зрительной информации.

Видение мозгом

Каждый оптический нерв состоит из примерно миллиона аксонов, которые идут от ганглиозных клеток. Не забывайте, что ганглиозные клетки просто переносят сообщения, которые они получают от биполярных клеток, а те, в свою очередь, от палочек и колбочек. Это что-то на подобие огромной нейробиомолекулярной эстафеты. Конечная цель – достичь визуального центра мозга, где определенная пространственная модель нервного возбуждения в конечном итоге обрабатывается и интерпретируется как «зрение».

Около 80% аксонов от ганглиозных клеток в оптическом нерве направляются к распределительной коробке мозга, которая называется боковым коленчатым телом. В этом соединительном нервном центре каждый ганглиозный аксон передает дальше свои сообщения с помощью высвобождения нейротрансмитера, который побуждает другой нейрон передавать дальше это сообщение к зрительной зоне коры головного мозга.

Оставшиеся 20% аксонов ганглиозных клеток меняют свое направление как раз перед распределительной коробкой, объединяются с другой системой, которая несет ответственность за некоторые автоматические рефлексы, происходящие в глазе. Когда свет проникает в глаз (освещает его), это приводит к тому, что зрачок, сокращаясь, становится меньше, а когда мало света в темной комнате, зрачок автоматически расширяется, чтобы пропустить больше света. Именно эти сообщения от ганглиозных клеток и начинают рефлексную дугу, которая порождает эти действия.

Видение мозгом

Полное изменение реальности: фокусирование побочных эффектов.

Рассмотрим природу изображения, которое проектируется на сетчатке после того, как лучи света перемещаются через глаз. Если вы когда-либо игрались с линзами, то вы должны помнить, что каждый раз, когда лучи света проходят сквозь криволинейную поверхность, то они не только преломляются, но и изображение с другой стороны становится полностью перевернутым.

Следовательно, когда мы рассматриваем то, что происходит с изображением света, когда оно проходит сквозь глаз, мы должны принять во внимание тот факт, что свет проходит три отдельных преломления. Первое преломление происходит, когда свет пересекает роговицу. На этой стадии, изображение было бы совершенно перевернутым, это означает, что оно было бы повернутым и перевернутым вверх дном. Но не забывайте, что свету все еще нужно пройти сквозь хрусталик, пока он не переместится в сетчатку.

У хрусталика есть две выпуклые поверхности в противоположность одной у роговицы. Изображение, проходя сквозь переднюю поверхность хрусталика снова приводится в порядок. Но потом оно дальше преломляется, поскольку проходит сквозь заднюю поверхность хрусталика, в результате которого возникает конечное изображение на сетчатке, которое является повернутым и перевернутым вверх дном. (см. рис. 1)

Вы можете подумать о том, как это может влиять на наше зрение? Не забывайте, что клетки фоторецепторов сетчатки просто посылают изображение в мозг на основе света, что отражает объект, на который мы смотрим. Следовательно, если изображение само по себе было перевернуто, то есть вверх дном, то сообщение, которое посылается из сетчатки в мозг, будет также это отражать. Это уже дело мозга - расшифровывать это зеркальное электрическое сообщение, которое посылается из глаз.

Видение мозгом

Все дело в перспективе.

Еще одна важная вещь, которую нужно помнить о зрении, может быть продемонстрирована следующим упражнением. Если вы сосредоточитесь на объекте, а затем переменно посмотрите на него каждым глазом, вы заметите, что есть существенное наложение между носовыми полями каждого глаза, немного под другим углом. Это означает, что, когда вы сосредотачиваете свой взгляд на чем-то, то глаз способен пересылать сообщения к мозгу, которые дают ему две различные перспективы. Вот таким образом мы можем достигать своего восприятия глубины.

Видение мозгом

Никто в действительности не может точно понять, как мы можем видеть. Это то же самое, что задать вопрос, что же является нейробиомолекулярной основой для определенной мысли, желания или эмоции.

Возможно, мы можем выяснить, в какой части мозга эти процессы происходят, с помощью каких нейротрансмитеров и в каких концентрациях, и с какими другими нейронами происходят реакции. Но мы все еще точно не понимаем, как эти процессы проявляются в особенных восприятиях, таких как зрение.

Мы не понимаем того, как мы можем думать. Философ Габриель Марсел определил эту загадку так: «проблема, которая посягает на свои собственные данные». Он подразумевал, что тот, кто задает этот вопрос, невольно становиться объектом вопроса. Человеческий мозг пробует выяснить, как он сам работает.

Видение мозгом

Вероятно, вышеизложенное вынудит людей задуматься перед тем, как они примут теорию макроэволюции и то, как она может применяться к развитию человеческого глаза и зрения. Как можно быть таким уверенным относительно теории происхождения, когда еще не понятно, как что-то фактически работает? Большинство того, что я прочитал у сторонников эволюции на тему зрения, содержит много риторики и предположений без приведения деталей и логической последовательности. Все это кажется немного преждевременным и несколько самонадеянным.

Наука пока не имеет инструментов, которые могут определенно сделать вывод об эволюции глаз и зрения. Будет ли она их когда-либо иметь? Может да, а может, нет. До этого времени, я сохраняю право смотреть на эволюционные объяснения биологов о происхождении человеческого зрения с большим количеством скептицизма, и как на чрезмерно упрощенные и требующие большого количества слепой веры.

Видение мозгом

СВЕРХВОЗМОЖНОСТИ ЧЕЛОВЕЧЕСКОГО МОЗГА

Евгений Голомлзин.

Помните, как, в свое время, третировали людей, которые утверждали, что могут видеть пальцами, носом, ступнями и другими частями тела. В лучше случае их объявляли шарлатанами, в худшем - их ждала психушка.

Теперь можно сказать, что пришло время реабилитации, потому что существует методика, которая может научить видеть, слышать и ощущать непосредственно мозгом. А наука, в лице Бехтеревой Натальи Петровны, подтвердила такую возможность.

Однажды мне на глаза попалась цифра, которая поразила меня. Человечество накопило огромное количество знаний, но, оказывается, доля знаний о самом человеке составляет среди них не более трех процентов.
Выходит, что человек больше знает о планетах Солнечной системы и строении атома, чем об устройстве самого себя. Но поскольку природа не терпит пустоты, эта ниша непременно должна быть заполнена, а значит, научные исследования ближайшего будущего будут посвящены, главным образом, изучению человека - его тела, души и духа, а также их возможностей.
Мою мысль подтвердило выступление академика Бехтеревой Натальи Петровны на всемирном конгрессе "Итоги тысячелетия", проходившем в Санкт-Петербурге в конце 2000 года. Ее доклад был посвящен сверхвозможностям человеческого мозга.

ДАРВИН, ТЫ НЕ ПРАВ!
Аристотель был уверен, что душа находится в сердце, а мозг служит для охлаждения проходимой через него крови. С тех пор прошло много времени, но мозг по-прежнему остается большой загадкой даже для специалистов.

Мозг наших далеких предков не сильно отличается от нашего мозга, что не укладывается в эволюционную теорию Дарвина. По всей видимости, человечество со временем не становится умнее. С другой стороны, наш мозг легко приспосабливается к стремительно возрастающему информационному потоку - он запросто осваивает новую технику, технологии, которые и не снились людям, жившим всего 50-100 лет назад. При этом говорят, что человек средних способностей использует свой мозг на 20-30 процентов.

"Я бы не определяла работоспособность мозга в процентах, - говорит Наталья Петровна. - Мозг использует столько своих ресурсов, сколько человеку в данный момент нужно.

Но если это так, значит, мозг изначально имеет все возможности для решения любых задач, которые возникали, возникают, и даже будут возникать перед человеком? Наука о мозге отвечает на этот вопрос утвердительно.

Видение мозгом

ФЕНОМЕН ДЕТЕКТОРА ОШИБОК
Существует интересное явление - феномен "детектора ошибок", открытый в Институте мозга еще в 1968 году. Возникает он в виде реакции мозга на отклонение деятельности человека от какого-либо плана.

Например, уходя из дома, человек проверяет, выключил ли он утюг. Достаточно сделать это один раз, как в мозгу формируется некая контролирующая программа. В результате спешащий на работу человек, уже на улице начинает чувствовать дискомфорт. Его беспокойство усиливается до тех пор, пока он не возвращается домой и не обнаруживает, что забыл выключить утюг.

Оказывается, мозг сам, независимо от человека, проверяет, все ли его хозяин сделал правильно. Если нет, он доступными способами пытается сообщить об ошибке. Чем опаснее отклонения от нормы, тем громче об этом заявляет мозг. Часто это называют интуицией. Это открытие имеет очень важное значение. Какое?

"На протяжении сотен лет человеку со школьной скамьи говорили - не убий, не укради, - говорит Бехтерева. Что при этом происходило? В мозгу возникала своеобразная охранная служба, которая называется совесть. Эта служба работала иногда сильнее, чем указы, постановления и суд. Человек не осознавая причины, стремился не выходить за рамки десяти заповедей".

Что произошло потом? Эти законы исчезли из школьной программы. Их заменили законами физики, химии, зоологии, а историю представили перечнем войн и биографиями властителей и завоевателей. Можно себе представить, какие "охранные" программы сейчас стоят в мозгу.

Последствия их работы мы видим на каждом шагу, поскольку наш "детектор ошибок" не знает, что есть норма. При решении задач взаимоотношений между людьми он пользуется физическими законами, вроде "сила действия равна силе противодействия". И тогда человек начинает крушить все вокруг - "око за око, зуб за зуб". Ничего не поделаешь - другой-то программы у него нет.

ГЕНИАЛЬНОСТЬ - ЭТО НОРМА
"Детектор ошибок" всего лишь верхушка айсберга возможностей человеческого мозга.

Однажды при лечении болезни Паркинсона стимуляцией мозга вживленными электродами, пациентка неожиданно почувствовала сильное чувство любви к лечащему врачу. Причем чувство было настолько сильным, что пришлось обращаться за помощью к психотерапевту.

В другой раз сотрудник Института экспериментальной медицины Владимир Михайлович Смирнов также занимался стимуляцией мозга больного. Внезапно тот как бы резко "поумнел" - в два раза улучшилась память, он стал быстрее считать. Пациент сказал, что ощутил что-то вроде озарения. Такое чувство возникает у творческих людей в момент, когда они становятся способны написать выдающиеся стихи, музыку, сделать открытие или изобретение.

"У меня в жизни бывало так, что буквально в готовом виде получала решения, до которых, как мне казалось, я просто не могла сама додуматься - вспоминает Наталья Петровна. - Решение ниоткуда, кроме определенного склада ума требует и определенного настроя, психического состояния. Это как бы состояние "приема". Причем оно не является чем-то экзотическим, не слишком отличается от нормы".

Выходит, что в мозгу каждого человека имеется все необходимое, чтобы стать гением? Скорее всего, это так. Каждый мозг, несомненно, обладает сверхвозможностями, и этот факт подтвердила наука. У людей, которых мы называем талантами, эта способность открыта с рождения. Бывает, что она включается в экстремальных ситуациях. Большинство же людей этими возможностями не пользуется. На это есть причины.

Известно, что для гениев характерно "сжигание" себя. Не зря их сравнивают с падающими метеорами - вспыхнул в ночи, высветил путь, поразил воображение и угас. Немногие гении доживали до преклонного возраста. Это происходило потому, что при активированных сверхвозможностях у них в мозгу были выключены защитные механизмы, призванные защитить человека от самого себя. Те гении, которые дожили до глубокой старости, такую защиту имели. А можно ли научиться открывать сверх возможности, не выключая защитные функции мозга. Теперь наука может дать утвердительный ответ.

Экстрафильм от 26.07.16

Почему то в последние дни, точнее ночи, я совершенно перестал наблюдать особей мужского пола. Не понимаю, с чем это связано, но куда бы я ни отправился, точнее, куда бы меня не послали, я вижу одних только женщин.


Сегодня, я пытался сосредоточиться, и мысленно задавал вопрос: - «Почему? Где все мужчины»?

Ответа не было. Но вот меня занесло за кулисы театральной сцены, где танцовщицы облачённые в трико, с изображением сумасшедших ломаных чёрных и белых линий, устроил себе небольшой перерыв в репетиции. Только успел подумать о том, что вероятно я сейчас увижу нечто вроде «Танца молний», как в моём мире разразилась ужасающая гроза.

Очнулся, открыл глаза, даже жутко стало, не помню, когда ещё так грохотало. Сверкание молний видно даже сквозь очень плотную занавесь на небольшом окне слева от стола в моём кабинете.

Встал. Время ровно 03:00. Вышел в сени, и там через остеклённую дверь ведущую на задний двор, сполна насладился невероятным зрелищем. Молнии сверкали практически не переставая, по нескольку штук одновременно в разных местах. А гром был не похож на гром. Звук такой, словно на город падают пятисоткилограммовые авиабомбы. Это взрывы, а не гром.

Сигарета выкурена, уду ложиться снова. Закрываю глаза, и через опущенные веки продолжаю видеть вспышки. После одной такой, особенно мощной, по прошествии десяти секунд небо над крышей моего дома буквально раскалывается от грохота.

И тут только я начинаю догадываться, что я вижу вовсе не отблески света в комнате.
Не могу я видеть вспышки молний с опущенными веками в комнате, которая молниями не освещается. Их можно видеть только глядя на занавеску, непроницаемую для света снаружи.

Тогда я зажимаю оба глаза плотно сжатой пятернёй. Эффект тот же. Вижу вспышки, за которыми следует грохот с небес. Усложняю задачу. Один глаз открываю, и смотрю им на занавеску. Наблюдаю очередную вспышку обеими глазами, и следом звучит гром.

Ошибки быть не может. До меня доходит, что сегодня я вижу молнии не глазами, а непосредственно мозгом. Иначе, это явление не объяснить. Возможно, электромагнитный импульс разряда формирует в мозгу электрический сигнал, который мозг привычно интерпретирует как вспышку молнии, наблюдаемую глазом.

Но вот интересно… Сейчас мои глаза исключены из процесса преобразования света в сигнал, посылаемый ими в мозг, на обработку. Если это так, значит теоретически, очень многие явления, сопряжённые с выделением какого - либо вида энергии, человек способен прекрасно видеть с закрытыми глазами! Значит не все «колдуны» врут, что могут видеть окружающий мир с плотно завязанными глазами? Может, Юрий Горный на самом деле водит автомобиль с чёрной полумаской на верхней части лица, перевязанной сверху шарфом из светонепроницаемой ткани, и при этом не обманывает доверчивую публику? Это не трюк? Это способности?

Да и правда. Видим же мы картинки, читая книгу, например? Или просто фантазируем, и уж тем более, когда видим сны. Мозг сам формирует изображение без всякого участи глаз!

Далее я решил узнать об этом по подробнее у моих гидов, но они по своему обыкновению сами решили за меня, что мне показывать. Я увидел сверху всю Европу, и почти повсеместно дожди. А вот над метрополией Британской империи видно какое то свечение. Очень похоже на то, что там что-то происходит, или произойдёт. Не обязательно плохое, может и хорошее, но последствия окажутся значимыми для многих стран. Нужно последить за новостями из Лондона.

Продолжаем рассматривать как работает наше зрение.

Как он это делает?

Несмотря на наши героические достижения, мы этого практически не знаем. Но все же у нас есть определенная информация о том, как происходит визуальная обработка, в противном случае эта лекция была бы совсем короткой. У нас есть определенные основы, и эти основы довольно хорошо исследованы. Описать их можно в три шага.

Я (доктор Медина) несколько раз был в Лувре и всегда меня удивляло, насколько мала "Мона Лиза".

Размер картины на самом деле составляет около 75х50 сантиметров. Представьте себе, что вы вместе со мной оказались в Лувре, смотрите на небольшой шедевр Леонардо, заключенный в пуленепробиваемое стекло с климат-контролем, пытаясь протиснуться сквозь толпу, чтобы взглянуть хотя бы мельком.

Что поступает в ваши глаза, когда вы воспринимаете картину?

Шаг номер один: свет от "Моны" поступает в ваши глаза. Как вы, возможно, знаете, на самом деле вы никогда не видите предметов. То, что вы видите - это часть света, отраженного от объекта. Только те фотоны, которым повезет попасть в ваши глаза, будут выполнять задачу обеспечения вашего видения. Их путешествие начинается, когда эти прыгающие фотоны находят путь через зрачок и попадают на заднюю стенку глаза.

Они стимулируют сетчатку - тонкий слой нервной ткани, которым выстлана обратная сторона глаза. Эта стимуляция позволяет вам получать от картины визуальную информацию.

Вы обнаруживаете различные уровни яркости. Вы обнаруживаете различные цвета - или длину волн. Вы обнаруживаете свет, который отскакивает от плексигласа, защищающего картину, и людей на своем пути, когда вы пытаетесь на нее взглянуть.

В сетчатке есть специальные клетки, которые отвечают на эту информацию, превращая этот отраженный свет в схему электрических импульсов.

Как вы помните, это называется трансдукцией.

Шаг номер два: сигнал посылается в заднюю часть мозга.

После превращения эти импульсы, кодирующие визуальную информацию "Моны",ьчерез оптический нерв направляются в более глубокие структуры мозга.

У сигналов будет пит-стоп в таламусе - яйцеобразной структуре в середине мозга. Но там они не остаются надолго.

Вместо этого сигналы быстро переходят в заднюю часть головы, в область, которая известна как затылочная доля - если вам хочется быть более точными, это зона V1 визуального кортекса.

Если вы положите руку на затылок, она будет находиться очень близко от той зоны мозга, которая позволяет вам видеть, как я говорю. Вы будете как раз около вашей затылочной доли мозга.

В этой доле есть детекторы, предназначенные для обработки определенных аспектов поля зрения. Есть клетки, которые отвечают лишь за вертикальные линии, вроде этой рамки вокруг картины.

Другие клетки отвечают только за округлые формы, к примеру, глаза Моны.

Некоторые отвечают только на длину волны определенный длины, к примеру, коричневый цвет ее одежды.

Эта информация извлекается из первоначального образа и передается в отдельные области мозга, которые могут находиться далеко друг от друга, разбросанными в разрушительном неистовстве Пикассо.

Если безнадежно смешать метафоры, то это во многом похоже на процесс приготовления хлопьев, который вы помните из прошлой лекции. И, как и в прошлой лекции, вам нужно будет реконструировать эти разбросанные кусочки обратно в связное целое, если вы хотите, чтобы ваше путешествие в Лувр имело смысл. Именно это и происходит в третьем шаге.

Шаг номер три: разделение путей.

Восстановление начинается, когда этим разрозненным электрическим сигналам дается приказ собраться в два больших нейронных пути. Эти пути имеют свое название. Формально они называются "вентральный путь" и "дорсальный путь". Неформально они носят название пути "что?" и "где?", так как они обрабатывают различные аспекты визуальной информации,

Которые восстанавливаются из задней части головы.

К примеру, путь "что?" обрабатывает информацию, которая дает предмету его узнаваемую форму. Вы видите овал лица Моны Лизы и понимаете, что оно не квадратное - и это не ягуар, - благодаря этому вентральному пути. Другие формы проходят такую же обработку.

Если вы повредите этот путь, вы больше не сможете визуально распознавать отдельные предметы.

Есть люди, которые потеряли способность узнавать животных, когда были повреждены определенные части этого пути. Они могут видеть животных, но если вы покажете такому человеку пластиковую фигурку носорога, они не смогут сказать, что это за животное.

Если вы попросите их закрыть глаза и просто ощупать игрушку, они немедленно ее узнают.

Они говорят: "Я ощущаю носорога". Теперь вы понимаете, почему этот путь называется "что?".

Второй путь, дорсальный, иногда называют "где?".

Как подразумевает его название, он не обрабатывает информацию о том, что это за объект.

Он обрабатывает информацию о том, где находится объект, что означает его местоположение.

Эта обработка касается не только стационарных, но и движущихся объектов.

Когда человек видит, как носорог идет по саванне, то это происходит благодаря дорсальному пути - пути "где?". Этот путь дополнительно отвечает за то, чтобы помочь вам контролировать движения, следите ли вы за чем-то взглядом или хотите указать на предмет рукой.

Комбинация информации от этих двух путей плюс исходящие потоки из многих других областей в конечном итоге и дают нам опыт сознательного зрительного восприятия.

Это подобно тому, как Амазонка формируется из речек, которые собирают бесчисленные горные ручейки.

И это конец шага три.

Однако это еще не конец истории.