Критерий согласия Пирсона (критерий хи-квадрат). Решения задач на проверку статистических гипотез

Задача 1.

Используя критерий Пирсона, при уровне значимости a = 0,05 проверить, согласуется ли гипотеза о нормальном распределении генеральной совокупности X с эмпирическим распределением выборки объема n = 200.

Решение.

1. Вычислим и выборочное среднее квадратическое отклонение .
2. Вычислим теоретические частоты учитывая, что n = 200, h = 2, = 4,695, по формуле
.

Составим расчетную таблицу (значения функции j (x ) приведены в приложении 1).


i

3. Сравним эмпирические и теоретические частоты. Составим расчетную таблицу, из которой найдем наблюдаемое значение критерия :


i
Сумма

По таблице критических точек распределения (приложение 6), по уровню значимости a = 0,05 и числу степеней свободы k = s – 3 = 9 – 3 = 6 находим критическую точку правосторонней критической области (0,05; 6) = 12,6.
Так как =22,2 > = 12,6, гипотезу о нормальном распределении генеральной совокупности отвергаем. Другими словами, эмпирические и теоретические частоты различаются значимо.

Задача2

Представлены статистические данные.

Результаты измерений диаметров n = 200 валков после шлифовки обобщены в табл. (мм):
Таблица Частотный вариационный ряд диаметров валков

i

xi , мм

xi , мм

Требуется:

1) составить дискретный вариационный ряд, при необходимости упорядочив его;

2) определить основные числовые характеристики ряда;

3) дать графическое представление ряда в виде полигона (гистограммы) распределения;

4) построить теоретическую кривую нормального распределения и проверить соответствие эмпирического и теоретического распределений по критерию Пирсона. При проверке статистической гипотезы о виде распределения принять уровень значимости a = 0,05

Решение: Основные числовые характеристики данного вариационного ряда найдем по определению. Средний диаметр валков равен (мм):
x ср = = 6,753;
исправленная дисперсия (мм2):
D = = 0,0009166;
исправленное среднее квадратическое (стандартное) отклонение (мм):
s = = 0,03028.


Рис. Частотное распределение диаметров валков

Исходное («сырое») частотное распределение вариационного ряда, т.е. соответствие ni (xi ), отличается довольное большим разбросом значений ni относительно некоторой гипотетической «усредняющей» кривой (рис.). В этом случае предпочтительно построить и анализировать интервальный вариационный ряд, объединяя частоты для диаметров, попадающих в соответствующие интервалы.
Число интервальных групп K определим по формуле Стерджесса:
K = 1 + log2n = 1 + 3,322lgn ,
где n = 200 – объем выборки. В нашем случае
K = 1 + 3,322×lg200 = 1 + 3,322×2,301 = 8,644 » 8.
Ширина интервала равна (6,83 – 6,68)/8 = 0,01875 » 0,02 мм.
Интервальный вариационный ряд представлен в табл.

Таблица Частотный интервальный вариационный ряд диаметров валков.

k

xk , мм

Интервальный ряд может быть наглядно представлен в виде гистограммы частотного распределения.


Рис . Частотное распределение диаметров валков. Сплошная линия – сглаживающая нормальная кривая.

Вид гистограммы позволяет сделать предположение о том, что распределение диаметров валков подчиняется нормальному закону, согласно которому теоретические частоты могут быть найдены как
nk , теор = n ×N (a ; s; xk )×Dxk ,
где, в свою очередь, сглаживающая гауссова кривая нормального распределения определяется выражением:
N (a ; s; xk ) = .
В этих выражениях xk – центры интервалов в частотном интервальном вариационном ряде.

Например, x 1 = (6,68 + 6,70)/2 = 6,69. В качестве оценок центра a и параметра s гауссовой кривой можно принять:
a = x ср.
Из рис. видно, что гауссова кривая нормального распределения в целом соответствует эмпирическому интервальному распределению. Однако следует удостовериться в статистической значимости этого соответствия. Используем для проверки соответствия эмпирического распределения эмпирическому критерий согласия Пирсона c2 . Для этого следует вычислить эмпирическое значение критерия как сумму
= ,
где nk и nk ,теор – эмпирические и теоретические (нормальные) частоты, соответственно. Результаты расчетов удобно представить в табличном виде:
Таблица Вычисления критерия Пирсона


[xk , xk+ 1), мм

xk , мм

nk ,теор

Критическое значение критерия найдем по таблице Пирсона для уровня значимости a = 0,05 и числа степеней свободы d .f . = K – 1 – r , где K = 8 – число интервалов интервального вариационного ряда; r = 2 – число параметров теоретического распределения, оцененных на основании данных выборки (в данном случае, – параметры a и s). Таким образом, d .f . = 5. Критическое значение критерия Пирсона есть крит(a; d .f .) = 11,1. Так как c2эмп < c2крит, заключаем, что согласие между эмпирическим и теоретическим нормальным распределением является статистическим значимым. Иными словами, теоретическое нормальное распределение удовлетворительно описывает эмпирические данные.

Задача3

Коробки с шоколадом упаковываются автоматически. По схеме собственно-случайной бесповторной выборки взято 130 из 2000 упаковок, содержащихся в партии, и получены следующие данные об их весе:

Требуется используя критерий Пирсона при уровне значимости a=0,05 проверить гипотезу о том, что случайная величина X – вес упаковок – распределена по нормальному закону. Построить на одном графике гистограмму эмпирического распределения и соответствующую нормальную кривую.

Решение

1012,5
= 615,3846

Примечание:

В принципе в качестве дисперсии нормального закона распределения следует взять исправленную выборочную дисперсию. Но т.к. количество наблюдений – 130 достаточно велико, то подойдет и “обычная” .
Таким образом, теоретическое нормальное распределение имеет вид:

Интервал

[xi ; xi+1 ]

Эмпирические частоты

ni

Вероятности
pi

Теоретические частоты
npi

(ni-npi)2

​ Критерий корреляции Пирсона – это метод параметрической статистики, позволяющий определить наличие или отсутствие линейной связи между двумя количественными показателями, а также оценить ее тесноту и статистическую значимость. Другими словами, критерий корреляции Пирсона позволяет определить, есть ли линейная связь между изменениями значений двух переменных. В статистических расчетах и выводах коэффициент корреляции обычно обозначается как r xy или R xy .

1. История разработки критерия корреляции

Критерий корреляции Пирсона был разработан командой британских ученых во главе с Карлом Пирсоном (1857-1936) в 90-х годах 19-го века, для упрощения анализа ковариации двух случайных величин. Помимо Карла Пирсона над критерием корреляции Пирсона работали также Фрэнсис Эджуорт и Рафаэль Уэлдон .

2. Для чего используется критерий корреляции Пирсона?

Критерий корреляции Пирсона позволяет определить, какова теснота (или сила) корреляционной связи между двумя показателями, измеренными в количественной шкале. При помощи дополнительных расчетов можно также определить, насколько статистически значима выявленная связь.

Например, при помощи критерия корреляции Пирсона можно ответить на вопрос о наличии связи между температурой тела и содержанием лейкоцитов в крови при острых респираторных инфекциях, между ростом и весом пациента, между содержанием в питьевой воде фтора и заболеваемостью населения кариесом.

3. Условия и ограничения применения критерия хи-квадрат Пирсона

  1. Сопоставляемые показатели должны быть измерены в количественной шкале (например, частота сердечных сокращений, температура тела, содержание лейкоцитов в 1 мл крови, систолическое артериальное давление).
  2. Посредством критерия корреляции Пирсона можно определить лишь наличие и силу линейной взаимосвязи между величинами. Прочие характеристики связи, в том числе направление (прямая или обратная), характер изменений (прямолинейный или криволинейный), а также наличие зависимости одной переменной от другой - определяются при помощи регрессионного анализа .
  3. Количество сопоставляемых величин должно быть равно двум. В случае анализ взаимосвязи трех и более параметров следует воспользоваться методом факторного анализа .
  4. Критерий корреляции Пирсона является параметрическим , в связи с чем условием его применения служит нормальное распределение сопоставляемых переменных. В случае необходимости корреляционного анализа показателей, распределение которых отличается от нормального, в том числе измеренных в порядковой шкале, следует использовать коэффициент ранговой корреляции Спирмена .
  5. Следует четко различать понятия зависимости и корреляции. Зависимость величин обуславливает наличие корреляционной связи между ними, но не наоборот.

Например, рост ребенка зависит от его возраста, то есть чем старше ребенок, тем он выше. Если мы возьмем двух детей разного возраста, то с высокой долей вероятности рост старшего ребенка будет больше, чем у младшего. Данное явление и называется зависимостью , подразумевающей причинно-следственную связь между показателями. Разумеется, между ними имеется и корреляционная связь , означающая, что изменения одного показателя сопровождаются изменениями другого показателя.

В другой ситуации рассмотрим связь роста ребенка и частоты сердечных сокращений (ЧСС). Как известно, обе эти величины напрямую зависят от возраста, поэтому в большинстве случаев дети большего роста (а значит и более старшего возраста) будут иметь меньшие значения ЧСС. То есть, корреляционная связь будет наблюдаться и может иметь достаточно высокую тесноту. Однако, если мы возьмем детей одного возраста , но разного роста , то, скорее всего, ЧСС у них будет различаться несущественно, в связи с чем можно сделать вывод о независимости ЧСС от роста.

Приведенный пример показывает, как важно различать фундаментальные в статистике понятия связи и зависимости показателей для построения верных выводов.

4. Как рассчитать коэффициента корреляции Пирсона?

Расчет коэффициента корреляции Пирсона производится по следующей формуле:

5. Как интерпретировать значение коэффициента корреляции Пирсона?

Значения коэффициента корреляции Пирсона интерпретируются исходя из его абсолютных значений. Возможные значения коэффициента корреляции варьируют от 0 до ±1. Чем больше абсолютное значение r xy – тем выше теснота связи между двумя величинами. r xy = 0 говорит о полном отсутствии связи. r xy = 1 – свидетельствует о наличии абсолютной (функциональной) связи. Если значение критерия корреляции Пирсона оказалось больше 1 или меньше -1 – в расчетах допущена ошибка.

Для оценки тесноты, или силы, корреляционной связи обычно используют общепринятые критерии, согласно которым абсолютные значения r xy < 0.3 свидетельствуют о слабой связи, значения r xy от 0.3 до 0.7 - о связи средней тесноты, значения r xy > 0.7 - о сильной связи.

Более точную оценку силы корреляционной связи можно получить, если воспользоваться таблицей Чеддока :

Оценка статистической значимости коэффициента корреляции r xy осуществляется при помощи t-критерия, рассчитываемого по следующей формуле:

Полученное значение t r сравнивается с критическим значением при определенном уровне значимости и числе степеней свободы n-2. Если t r превышает t крит, то делается вывод о статистической значимости выявленной корреляционной связи.

6. Пример расчета коэффициента корреляции Пирсона

Целью исследования явилось выявление, определение тесноты и статистической значимости корреляционной связи между двумя количественными показателями: уровнем тестостерона в крови (X) и процентом мышечной массы в теле (Y). Исходные данные для выборки, состоящей из 5 исследуемых (n = 5), сведены в таблице.

Критерий согласия для проверки гипотезы о законе распределения исследуемой случайной величины.Во многих практических задачах точный закон распределения неизвестен.Поэтому выдвигается гипотеза о соответствии имеющегося эмпирического закона, построенного по наблюдениям, некоторому теоретическому.Данная гипотеза требует статистической проверки, по результатам которой будет либо подтверждена, либо опровергнута.

Пусть X – исследуемая случайная величина. Требуется проверить гипотезу H 0 о том, что данная случайная величина подчиняется закону распределения F(x). Для этого необходимо произвести выборку из n независимых наблюдений и по ней построить эмпирический закон распределения F"(x). Для сравнения эмпирического и гипотетического законов используется правило, называемое критерием согласия.Одним из популярных является критерий согласия хи-квадрат К. Пирсона.

В нем вычисляется статистика хи-квадрат:

,

где N – число интервалов, по которому строился эмпирический закон распределения (число столбцов соответствующей гистограммы), i – номер интервала, p t i - вероятность попадания значения случайной величины в i-й интервал для теоретического закона распределения, p e i – вероятность попадания значения случайной величины в i-й интервал для эмпирического закона распределения. Она и должна подчиняться распределению хи-квадрат.

Если вычисленное значение статистики превосходит квантиль распределения хи-квадрат с k-p-1 степенями свободы для заданного уровня значимости, то гипотеза H 0 отвергается.В противном случае она принимается на заданном уровне значимости.Здесь k – число наблюдений, p – число оцениваемых параметров закона распределения.

Пирсона позволяет осуществлять проверку эмпирического и теоретического (либо другого эмпирического) распределений одного признака. Данный критерий применяется, в основном, в двух случаях:

Для сопоставления эмпирического распределения признака с теоретическим распределением (нормальным, показательным, равномерным либо каким-то иным законом);

Для сопоставления двух эмпирических распределений одного и того же признака.

Идея метода – определение степени расхождения соответствующих частот n i и ; чем больше это расхождение, тем больше значение

Объемы выборок должны быть не меньше 50 и необходимо равенство сумм частот

Нулевая гипотеза H 0 ={два распределения практически не различаются между собой}; альтернативная гипотеза – H 1 ={расхождение между распределениями существенно}.

Приведем схему применения критерия для сопоставления двух эмпирических распределений:

Критерий - статистический критерий для проверки гипотезы , что наблюдаемая случайная величина подчиняется некому теоретическому закону распределения.


В зависимости от значения критерия , гипотеза может приниматься, либо отвергаться:

§ , гипотеза выполняется.

§ (попадает в левый "хвост" распределения). Следовательно, теоретические и практические значения очень близки. Если, к примеру, происходит проверка генератора случайных чисел, который сгенерировал n чисел из отрезка и гипотеза : выборка распределена равномерно на , тогда генератор нельзя называть случайным (гипотеза случайности не выполняется), т.к. выборка распределена слишком равномерно, но гипотеза выполняется.

§ (попадает в правый "хвост" распределения) гипотеза отвергается.

Определение: пусть дана случайная величина X .

Гипотеза : с. в. X подчиняется закону распределения .

Для проверки гипотезы рассмотрим выборку, состоящую из n независимых наблюдений над с.в. X: . По выборке построим эмпирическое распределение с.в X. Сравнение эмпирического и теоретического распределения (предполагаемого в гипотезе) производится с помощью специально подобранной функции -критерия согласия. Рассмотрим критерий согласия Пирсона (критерий ):

Гипотеза : Х n порождается функцией .

Разделим на k непересекающихся интервалов ;

Пусть - количество наблюдений в j-м интервале: ;

Вероятность попадания наблюдения в j-ый интервал при выполнении гипотезы ;

- ожидаемое число попаданий в j-ый интервал;

Статистика: - Распределение хи-квадрат с k-1 степенью свободы.

Критерий ошибается на выборках с низкочастотными (редкими) событиями.Решить эту проблему можно отбросив низкочастотные события, либо объединив их с другими событиями.Этот способ называется коррекцией Йетса (Yates" correction).

Критерий согласия Пирсона (χ 2) применяют для проверки гипотезы о соответствии эмпирического распределения предполагаемому теоретическому распределению F(x) при большом объеме выборки (n ≥ 100). Критерий применим для любых видов функции F(x), даже при неизвестных значениях их параметров, что обычно имеет место при анализе результатов механических испытаний. В этом заключается его универсальность.

Использование критерия χ 2 предусматривает разбиение размаха варьирования выборки на интервалы и определения числа наблюдений (частоты) n j для каждого из e интервалов. Для удобства оценок параметров распределения интервалы выбирают одинаковой длины.

Число интервалов зависит от объема выборки. Обычно принимают: при n = 100 e = 10 ÷ 15, при n = 200 e = 15 ÷ 20, при n = 400 e = 25 ÷ 30, при n = 1000 e = 35 ÷ 40.

Интервалы, содержащие менее пяти наблюдений, объединяют с соседними. Однако, если число таких интервалов составляет менее 20 % от их общего количества, допускаются интервалы с частотой n j ≥ 2.

Статистикой критерия Пирсона служит величина
, (3.91)
где p j - вероятность попадания изучаемой случайной величины в j-и интервал, вычисляемая в соответствии с гипотетическим законом распределением F(x). При вычислении вероятности p j нужно иметь в виду, что левая граница первого интервала и правая последнего должны совпадать с границами области возможных значений случайной величины.Например, при нормальном распределении первый интервал простирается до -∞, а последний - до +∞.

Нулевую гипотезу о соответствии выборочного распределения теоретическому закону F(x) проверяют путем сравнения вычисленной по формуле (3.91) величины с критическим значением χ 2 α , найденным по табл. VI приложения для уровня значимости α и числа степеней свободы k = e 1 - m - 1. Здесь e 1 - число интервалов после объединения; m - число параметров, оцениваемых по рассматриваемой выборке.Если выполняется неравенство
χ 2 ≤ χ 2 α (3.92)
то нулевую гипотезу не отвергают.При несоблюдении указанного неравенства принимают альтернативную гипотезу о принадлежности выборки неизвестному распределению.

Недостатком критерия согласия Пирсона является потеря части первоначальной информации, связанная с необходимостью группировки результатов наблюдений в интервалы и объединения отдельных интервалов с малым числом наблюдений.В связи с этим рекомендуется дополнять проверку соответствия распределений по критерию χ 2 другими критериями.Особенно это необходимо при сравнительно малом объеме выборки (n ≈ 100).

В таблице приведены критические значения хи-квадрат распределения с заданным числом степеней свободы.Искомое значение находится на пересечении столбца с соответствующим значением вероятности и строки с числом степеней свободы. Например, критическое значение хи-квадрат распределения с 4-мя степенями свободы для вероятности 0.25 составляет 5.38527. Это означает, что площадь под кривой плотности хи-квадрат распределения с 4-мя степенями свободы справа от значения 5.38527 равна 0.25.

​ Критерий χ 2 Пирсона – это непараметрический метод, который позволяет оценить значимость различий между фактическим (выявленным в результате исследования) количеством исходов или качественных характеристик выборки, попадающих в каждую категорию, и теоретическим количеством, которое можно ожидать в изучаемых группах при справедливости нулевой гипотезы. Выражаясь проще, метод позволяет оценить статистическую значимость различий двух или нескольких относительных показателей (частот, долей).

1. История разработки критерия χ 2

Критерий хи-квадрат для анализа таблиц сопряженности был разработан и предложен в 1900 году английским математиком, статистиком, биологом и философом, основателем математической статистики и одним из основоположников биометрики Карлом Пирсоном (1857-1936).

2. Для чего используется критерий χ 2 Пирсона?

Критерий хи-квадрат может применяться при анализе таблиц сопряженности , содержащих сведения о частоте исходов в зависимости от наличия фактора риска. Например, четырехпольная таблица сопряженности выглядит следующим образом:

Исход есть (1) Исхода нет (0) Всего
Фактор риска есть (1) A B A + B
Фактор риска отсутствует (0) C D C + D
Всего A + C B + D A + B + C + D

Как заполнить такую таблицу сопряженности? Рассмотрим небольшой пример.

Проводится исследование влияния курения на риск развития артериальной гипертонии. Для этого были отобраны две группы исследуемых - в первую вошли 70 человек, ежедневно выкуривающих не менее 1 пачки сигарет, во вторую - 80 некурящих такого же возраста. В первой группе у 40 человек отмечалось повышенное артериальное давление. Во второй - артериальная гипертония наблюдалась у 32 человек. Соответственно, нормальное артериальное давление в группе курильщиков было у 30 человек (70 - 40 = 30) а в группе некурящих - у 48 (80 - 32 = 48).

Заполняем исходными данными четырехпольную таблицу сопряженности:

В полученной таблице сопряженности каждая строчка соответствует определенной группе исследуемых. Столбцы - показывают число лиц с артериальной гипертонией или с нормальным артериальным давлением.

Задача, которая ставится перед исследователем: имеются ли статистически значимые различия между частотой лиц с артериальным давлением среди курящих и некурящих? Ответить на этот вопрос можно, рассчитав критерий хи-квадрат Пирсона и сравнив получившееся значение с критическим.

3. Условия и ограничения применения критерия хи-квадрат Пирсона

  1. Сопоставляемые показатели должны быть измерены в номинальной шкале (например, пол пациента - мужской или женский) или в порядковой (например, степень артериальной гипертензии, принимающая значения от 0 до 3).
  2. Данный метод позволяет проводить анализ не только четырехпольных таблиц, когда и фактор, и исход являются бинарными переменными, то есть имеют только два возможных значения (например, мужской или женский пол, наличие или отсутствие определенного заболевания в анамнезе...). Критерий хи-квадрат Пирсона может применяться и в случае анализа многопольных таблиц, когда фактор и (или) исход принимают три и более значений.
  3. Сопоставляемые группы должны быть независимыми, то есть критерий хи-квадрат не должен применяться при сравнении наблюдений "до-"после". В этих случаях проводится тест Мак-Немара (при сравнении двух связанных совокупностей) или рассчитывается Q-критерий Кохрена (в случае сравнения трех и более групп).
  4. При анализе четырехпольных таблиц ожидаемые значения в каждой из ячеек должны быть не менее 10. В том случае, если хотя бы в одной ячейке ожидаемое явление принимает значение от 5 до 9, критерий хи-квадрат должен рассчитываться с поправкой Йейтса . Если хотя бы в одной ячейке ожидаемое явление меньше 5, то для анализа должен использоваться точный критерий Фишера .
  5. В случае анализа многопольных таблиц ожидаемое число наблюдений не должно принимать значения менее 5 более чем в 20% ячеек.

4. Как рассчитать критерий хи-квадрат Пирсона?

Для расчета критерия хи-квадрат необходимо:

Данный алгоритм применим как для четырехпольных, так и для многопольных таблиц.

5. Как интерпретировать значение критерия хи-квадрат Пирсона?

В том случае, если полученное значение критерия χ 2 больше критического, делаем вывод о наличии статистической взаимосвязи между изучаемым фактором риска и исходом при соответствующем уровне значимости.

6. Пример расчета критерия хи-квадрат Пирсона

Определим статистическую значимость влияния фактора курения на частоту случаев артериальной гипертонии по рассмотренной выше таблице:

  1. Рассчитываем ожидаемые значения для каждой ячейки:
  2. Находим значение критерия хи-квадрат Пирсона:

    χ 2 = (40-33.6) 2 /33.6 + (30-36.4) 2 /36.4 + (32-38.4) 2 /38.4 + (48-41.6) 2 /41.6 = 4.396.

  3. Число степеней свободы f = (2-1)*(2-1) = 1. Находим по таблице критическое значение критерия хи-квадрат Пирсона, которое при уровне значимости p=0.05 и числе степеней свободы 1 составляет 3.841.
  4. Сравниваем полученное значение критерия хи-квадрат с критическим: 4.396 > 3.841, следовательно зависимость частоты случаев артериальной гипертонии от наличия курения - статистически значима. Уровень значимости данной взаимосвязи соответствует p<0.05.
Критерий согласия Пирсона :

Пример 1 . Используя критерий Пирсона, при уровне значимости 0.05 проверить, согласуется ли гипотеза о нормальном распределении генеральной совокупности X с эмпирическим распределением выборки объема n = 200.

Решение находим с помощью калькулятора .

x i Кол-во, f i x i * f i Накопленная частота, S (x - x ср) * f (x - x ср) 2 * f (x - x ср) 3 * f Частота, f i /n
5 15 75 15 114.45 873.25 -6662.92 0.075
7 26 182 41 146.38 824.12 -4639.79 0.13
9 25 225 66 90.75 329.42 -1195.8 0.13
11 30 330 96 48.9 79.71 -129.92 0.15
13 26 338 122 9.62 3.56 1.32 0.13
15 21 315 143 49.77 117.95 279.55 0.11
17 24 408 167 104.88 458.33 2002.88 0.12
19 20 380 187 127.4 811.54 5169.5 0.1
21 13 273 200 108.81 910.74 7622.89 0.065
200 2526 800.96 4408.62 2447.7 1

.
Средняя взвешенная


Показатели вариации .
.

R = X max - X min
R = 21 - 5 = 16
Дисперсия


Несмещенная оценка дисперсии


Среднее квадратическое отклонение .

Каждое значение ряда отличается от среднего значения 12.63 не более, чем на 4.7
.

.
нормальному закону




n = 200, h=2 (ширина интервала), σ = 4.7, x ср = 12.63

i x i u i φ i n* i
1 5 -1.63 0,1057 9.01
2 7 -1.2 0,1942 16.55
3 9 -0.77 0,2943 25.07
4 11 -0.35 0,3752 31.97
5 13 0.0788 0,3977 33.88
6 15 0.5 0,3503 29.84
7 17 0.93 0,2565 21.85
8 19 1.36 0,1582 13.48
9 21 1.78 0,0804 6.85
i n i n* i n i -n* i (n i -n* i) 2 (n i -n* i) 2 /n* i
1 15 9.01 -5.99 35.94 3.99
2 26 16.55 -9.45 89.39 5.4
3 25 25.07 0.0734 0.00539 0.000215
4 30 31.97 1.97 3.86 0.12
5 26 33.88 7.88 62.14 1.83
6 21 29.84 8.84 78.22 2.62
7 24 21.85 -2.15 4.61 0.21
8 20 13.48 -6.52 42.53 3.16
9 13 6.85 -6.15 37.82 5.52
200 200 22.86



Её границу K kp = χ 2 (k-r-1;α) находим по таблицам распределения «хи-квадрат» и заданным значениям σ, k = 9, r=2 (параметры x cp и σ оценены по выборке).
Kkp(0.05;6) = 12.59159; Kнабл = 22.86
Наблюдаемое значение статистики Пирсона попадает в критическую область: Кнабл > Kkp, поэтому есть основания отвергать основную гипотезу. Данные выборки распределены не по нормальному закону . Другими словами, эмпирические и теоретические частоты различаются значимо.

Пример 2 . Используя критерий Пирсона, при уровне значимости 0.05 проверить, согласуется ли гипотеза о нормальном распределении генеральной совокупности X с эмпирическим распределением выборки объема n = 200.
Решение .
Таблица для расчета показателей.

x i Кол-во, f i x i * f i Накопленная частота, S (x - x ср) * f (x - x ср) 2 * f (x - x ср) 3 * f Частота, f i /n
0.3 6 1.8 6 5.77 5.55 -5.34 0.03
0.5 9 4.5 15 6.86 5.23 -3.98 0.045
0.7 26 18.2 41 14.61 8.21 -4.62 0.13
0.9 25 22.5 66 9.05 3.28 -1.19 0.13
1.1 30 33 96 4.86 0.79 -0.13 0.15
1.3 26 33.8 122 0.99 0.0375 0.00143 0.13
1.5 21 31.5 143 5 1.19 0.28 0.11
1.7 24 40.8 167 10.51 4.6 2.02 0.12
1.9 20 38 187 12.76 8.14 5.19 0.1
2.1 8 16.8 195 6.7 5.62 4.71 0.04
2.3 5 11.5 200 5.19 5.39 5.59 0.025
200 252.4 82.3 48.03 2.54 1

Показатели центра распределения .
Средняя взвешенная


Показатели вариации .
Абсолютные показатели вариации .
Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.
R = X max - X min
R = 2.3 - 0.3 = 2
Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).


Несмещенная оценка дисперсии - состоятельная оценка дисперсии.


Среднее квадратическое отклонение .

Каждое значение ряда отличается от среднего значения 1.26 не более, чем на 0.49
Оценка среднеквадратического отклонения .

Проверка гипотез о виде распределения .
1. Проверим гипотезу о том, что Х распределено по нормальному закону с помощью критерия согласия Пирсона.

где n* i - теоретические частоты:

Вычислим теоретические частоты, учитывая, что:
n = 200, h=0.2 (ширина интервала), σ = 0.49, x ср = 1.26

i x i u i φ i n* i
1 0.3 -1.96 0,0573 4.68
2 0.5 -1.55 0,1182 9.65
3 0.7 -1.15 0,2059 16.81
4 0.9 -0.74 0,3034 24.76
5 1.1 -0.33 0,3765 30.73
6 1.3 0.0775 0,3977 32.46
7 1.5 0.49 0,3538 28.88
8 1.7 0.89 0,2661 21.72
9 1.9 1.3 0,1691 13.8
10 2.1 1.71 0,0909 7.42
11 2.3 2.12 0,0422 3.44

Сравним эмпирические и теоретические частоты. Составим расчетную таблицу, из которой найдем наблюдаемое значение критерия:

21.72 -2.28 5.2 0.24 9 20 13.8 -6.2 38.41 2.78 10 8 7.42 -0.58 0.34 0.0454 11 5 3.44 -1.56 2.42 0.7 ∑ 200 200 12.67

Определим границу критической области. Так как статистика Пирсона измеряет разницу между эмпирическим и теоретическим распределениями, то чем больше ее наблюдаемое значение K набл, тем сильнее довод против основной гипотезы.
Поэтому критическая область для этой статистики всегда правосторонняя: }