Solve the equation in a column. How to divide into a column? How to explain long division to a child? Division by single-digit, two-digit, three-digit numbers, division with a remainder


The division of natural numbers, especially multi-digit ones, is conveniently carried out by a special method, which is called division by a column (in a column). You can also find the name corner division. Let us immediately note that the column can be used to both divide natural numbers without a remainder and divide natural numbers with a remainder.

In this article we will look at how long division is performed. Here we will talk about recording rules and all intermediate calculations. First, let's focus on dividing a multi-digit natural number by a single-digit number with a column. After this, we will focus on cases when both the dividend and the divisor are multi-valued natural numbers. The entire theory of this article is provided with typical examples of division by a column of natural numbers with detailed explanations of the solution and illustrations.

Page navigation.

Rules for recording when dividing by a column

Let's start by studying the rules for writing the dividend, divisor, all intermediate calculations and results when dividing natural numbers by a column. Let's say right away that it is most convenient to do column division in writing on paper with a checkered line - this way there is less chance of straying from the desired row and column.

First, the dividend and divisor are written in one line from left to right, after which a symbol of the form is drawn between the written numbers. For example, if the dividend is the number 6 105 and the divisor is 5 5, then their correct recording when dividing into a column will be as follows:

Look at the following diagram to illustrate where to write the dividend, divisor, quotient, remainder, and intermediate calculations in long division.

From the above diagram it is clear that the required quotient (or incomplete quotient when dividing with a remainder) will be written below the divisor under the horizontal line. And intermediate calculations will be carried out below the dividend, and you need to take care in advance about the availability of space on the page. In this case, you should be guided by the rule: the greater the difference in the number of characters in the entries of the dividend and divisor, the more space will be required. For example, when dividing by a column the natural number 614,808 by 51,234 (614,808 is a six-digit number, 51,234 is a five-digit number, the difference in the number of characters in the records is 6−5 = 1), intermediate calculations will require less space than when dividing the numbers 8 058 and 4 (here the difference in the number of characters is 4−1=3). To confirm our words, we present complete records of division by a column of these natural numbers:

Now you can proceed directly to the process of dividing natural numbers by a column.

Column division of a natural number by a single-digit natural number, column division algorithm

It is clear that dividing one single-digit natural number by another is quite simple, and there is no reason to divide these numbers into a column. However, it will be helpful to practice your initial long division skills with these simple examples.

Example.

Let us need to divide with a column of 8 by 2.

Solution.

Of course, we can perform division using the multiplication table, and immediately write down the answer 8:2=4.

But we are interested in how to divide these numbers with a column.

First, we write down the dividend 8 and the divisor 2 as required by the method:

Now we begin to find out how many times the divisor is contained in the dividend. To do this, we sequentially multiply the divisor by the numbers 0, 1, 2, 3, ... until the result is a number equal to the dividend (or a number greater than the dividend, if there is a division with a remainder). If we get a number equal to the dividend, then we immediately write it under the dividend, and in the place of the quotient we write the number by which we multiplied the divisor. If we get a number greater than the dividend, then under the divisor we write the number calculated at the penultimate step, and in place of the incomplete quotient we write the number by which the divisor was multiplied at the penultimate step.

Let's go: 2·0=0 ; 2 1=2 ; 2·2=4 ; 2·3=6 ; 2·4=8. We have received a number equal to the dividend, so we write it under the dividend, and in place of the quotient we write the number 4. In this case, the record will take the following form:

The final stage of dividing single-digit natural numbers with a column remains. Under the number written under the dividend, you need to draw a horizontal line, and subtract the numbers above this line in the same way as is done when subtracting natural numbers in a column. The number resulting from the subtraction will be the remainder of the division. If it is equal to zero, then the original numbers are divided without a remainder.

In our example we get

Now we have before us a completed recording of the column division of the number 8 by 2. We see that the quotient of 8:2 is 4 (and the remainder is 0).

Answer:

8:2=4 .

Now let's look at how a column divides single-digit natural numbers with a remainder.

Example.

Divide 7 by 3 using a column.

Solution.

At the initial stage, the entry looks like this:

We begin to find out how many times the dividend contains the divisor. We will multiply 3 by 0, 1, 2, 3, etc. until we get a number equal to or greater than the dividend 7. We get 3·0=0<7 ; 3·1=3<7 ; 3·2=6<7 ; 3·3=9>7 (if necessary, refer to the article comparing natural numbers). Under the dividend we write the number 6 (it was obtained at the penultimate step), and in place of the incomplete quotient we write the number 2 (the multiplication was carried out by it at the penultimate step).

It remains to carry out the subtraction, and the division by a column of single-digit natural numbers 7 and 3 will be completed.

Thus, the partial quotient is 2 and the remainder is 1.

Answer:

7:3=2 (rest. 1) .

Now you can move on to dividing multi-digit natural numbers by columns into single-digit natural numbers.

Now we'll figure it out long division algorithm. At each stage, we will present the results obtained by dividing the multi-digit natural number 140,288 by the single-digit natural number 4. This example was not chosen by chance, since when solving it we will encounter all possible nuances and will be able to analyze them in detail.

    First we look at the first digit on the left in the dividend notation. If the number defined by this figure is greater than the divisor, then in the next paragraph we have to work with this number. If this number is less than the divisor, then we need to add to the consideration the next digit on the left in the notation of the dividend, and continue to work with the number determined by the two digits under consideration. For convenience, we highlight in our notation the number with which we will work.

    The first digit from the left in the notation of the dividend 140288 is the digit 1. The number 1 is less than the divisor 4, so we also look at the next digit on the left in the notation of the dividend. At the same time, we see the number 14, with which we have to work further. We highlight this number in the notation of the dividend.

The following steps from the second to the fourth are repeated cyclically until the division of natural numbers by a column is completed.

    Now we need to determine how many times the divisor is contained in the number we are working with (for convenience, let's denote this number as x). To do this, we sequentially multiply the divisor by 0, 1, 2, 3, ... until we get the number x or a number greater than x. When the number x is obtained, we write it under the highlighted number according to the recording rules used when subtracting natural numbers in a column. The number by which the multiplication was carried out is written in place of the quotient during the first pass of the algorithm (in subsequent passes of 2-4 points of the algorithm, this number is written to the right of the numbers already there). When we get a number that is greater than the number x, then under the highlighted number we write the number obtained at the penultimate step, and in place of the quotient (or to the right of the numbers already there) we write the number by which the multiplication was carried out at the penultimate step. (We carried out similar actions in the two examples discussed above).

    Multiply the divisor 4 by the numbers 0, 1, 2, ... until we get a number that is equal to 14 or greater than 14. We have 4·0=0<14 , 4·1=4<14 , 4·2=8<14 , 4·3=12<14 , 4·4=16>14 . Since at the last step we received the number 16, which is greater than 14, then under the highlighted number we write the number 12, which was obtained at the penultimate step, and in place of the quotient we write the number 3, since in the penultimate point the multiplication was carried out precisely by it.

    At this stage, from the selected number, subtract the number located under it using a column. The result of the subtraction is written under the horizontal line. However, if the result of the subtraction is zero, then it does not need to be written down (unless the subtraction at that point is the very last action that completely completes the process of long division). Here, for your own control, it would not be amiss to compare the result of the subtraction with the divisor and make sure that it is less than the divisor. Otherwise, a mistake was made somewhere.

    We need to subtract the number 12 from the number 14 with a column (for the correctness of the recording, we must remember to put a minus sign to the left of the numbers being subtracted). After completing this action, the number 2 appeared under the horizontal line. Now we check our calculations by comparing the resulting number with the divisor. Since the number 2 is less than the divisor 4, you can safely move on to the next point.

    Now, under the horizontal line to the right of the numbers located there (or to the right of the place where we did not write down the zero), we write down the number located in the same column in the notation of the dividend. If there are no numbers in the record of the dividend in this column, then the division by column ends there. After this, we select the number formed under the horizontal line, accept it as a working number, and repeat points 2 to 4 of the algorithm with it.

    Under the horizontal line to the right of the number 2 already there, we write down the number 0, since it is the number 0 that is in the record of the dividend 140,288 in this column. Thus, the number 20 is formed under the horizontal line.

    We select this number 20, take it as a working number, and repeat with it the actions of the second, third and fourth points of the algorithm.

    Multiply the divisor 4 by 0, 1, 2, ... until we get the number 20 or a number that is greater than 20. We have 4·0=0<20 , 4·1=4<20 , 4·2=8<20 , 4·3=12<20 , 4·4=16<20 , 4·5=20 . Так как мы получили число, равное числу 20 , то записываем его под отмеченным числом, а на месте частного, справа от уже имеющегося там числа 3 записываем число 5 (на него производилось умножение).

    We carry out the subtraction in a column. Since we are subtracting equal natural numbers, then by virtue of the property of subtracting equal natural numbers, the result is zero. We do not write down the zero (since this is not the final stage of division with a column), but we remember the place where we could write it (for convenience, we will mark this place with a black rectangle).

    Under the horizontal line to the right of the remembered place we write down the number 2, since it is precisely it that is in the record of the dividend 140,288 in this column. Thus, under the horizontal line we have the number 2.

    We take the number 2 as the working number, mark it, and we will once again have to perform the actions of 2-4 points of the algorithm.

    We multiply the divisor by 0, 1, 2, and so on, and compare the resulting numbers with the marked number 2. We have 4·0=0<2 , 4·1=4>2. Therefore, under the marked number we write the number 0 (it was obtained at the penultimate step), and in the place of the quotient to the right of the number already there we write the number 0 (we multiplied by 0 at the penultimate step).

    We perform the subtraction in a column, we get the number 2 under the horizontal line. We check ourselves by comparing the resulting number with the divisor 4. Since 2<4 , то можно спокойно двигаться дальше.

    Under the horizontal line to the right of the number 2, add the number 8 (since it is in this column in the entry for the dividend 140 288). Thus, the number 28 appears under the horizontal line.

    We take this number as a working number, mark it, and repeat steps 2-4.

There shouldn't be any problems here if you have been careful up to now. Having completed all the necessary steps, the following result is obtained.

All that remains is to carry out the steps from points 2, 3, 4 one last time (we leave this to you), after which you will get a complete picture of dividing the natural numbers 140,288 and 4 into a column:

Please note that the number 0 is written in the very bottom line. If this was not the last step of division by a column (that is, if in the record of the dividend there were numbers left in the columns on the right), then we would not write this zero.

Thus, looking at the completed record of dividing the multi-digit natural number 140,288 by the single-digit natural number 4, we see that the quotient is the number 35,072 (and the remainder of the division is zero, it is in the very bottom line).

Of course, when dividing natural numbers by a column, you will not describe all your actions in such detail. Your solutions will look something like the following examples.

Example.

Perform long division if the dividend is 7 136 and the divisor is a single-digit natural number 9.

Solution.

At the first step of the algorithm for dividing natural numbers by columns, we get a record of the form

After performing the actions from the second, third and fourth points of the algorithm, the column division record will take the form

Repeating the cycle, we will have

One more pass will give us a complete picture of the column division of the natural numbers 7,136 and 9

Thus, the partial quotient is 792, and the remainder is 8.

Answer:

7 136:9=792 (rest. 8) .

And this example demonstrates what long division should look like.

Example.

Divide the natural number 7,042,035 by the single-digit natural number 7.

Solution.

The most convenient way to do division is by column.

Answer:

7 042 035:7=1 006 005 .

Column division of multi-digit natural numbers

We hasten to please you: if you have thoroughly mastered the column division algorithm from the previous paragraph of this article, then you almost already know how to perform column division of multi-digit natural numbers. This is true, since stages 2 to 4 of the algorithm remain unchanged, and only minor changes appear in the first point.

At the first stage of dividing multi-digit natural numbers into a column, you need to look not at the first digit on the left in the notation of the dividend, but at the number of them equal to the number of digits contained in the notation of the divisor. If the number defined by these numbers is greater than the divisor, then in the next paragraph we have to work with this number. If this number is less than the divisor, then we need to add to the consideration the next digit on the left in the notation of the dividend. After this, the actions specified in paragraphs 2, 3 and 4 of the algorithm are performed until the final result is obtained.

All that remains is to see the application of the column division algorithm for multi-valued natural numbers in practice when solving examples.

Example.

Let's perform column division of multi-digit natural numbers 5,562 and 206.

Solution.

Since the divisor 206 contains 3 digits, we look at the first 3 digits on the left in the dividend 5,562. These numbers correspond to the number 556. Since 556 is greater than the divisor 206, we take the number 556 as a working number, select it, and move on to the next stage of the algorithm.

Now we multiply the divisor 206 by the numbers 0, 1, 2, 3, ... until we get a number that is either equal to 556 or greater than 556. We have (if multiplication is difficult, then it is better to multiply natural numbers in a column): 206 0 = 0<556 , 206·1=206<556 , 206·2=412<556 , 206·3=618>556. Since we received a number that is greater than the number 556, then under the highlighted number we write the number 412 (it was obtained at the penultimate step), and in place of the quotient we write the number 2 (since we multiplied by it at the penultimate step). The column division entry takes the following form:

We perform column subtraction. We get the difference 144, this number is less than the divisor, so you can safely continue performing the required actions.

Under the horizontal line to the right of the number there we write the number 2, since it is in the record of the dividend 5562 in this column:

Now we work with the number 1,442, select it, and go through steps two through four again.

Multiply the divisor 206 by 0, 1, 2, 3, ... until you get the number 1442 or a number that is greater than 1442. Let's go: 206·0=0<1 442 , 206·1=206<1 442 , 206·2=412<1 332 , 206·3=618<1 442 , 206·4=824<1 442 , 206·5=1 030<1 442 , 206·6=1 236<1 442 , 206·7=1 442 . Таким образом, под отмеченным числом записываем 1 442 , а на месте частного правее уже имеющегося там числа записываем 7 :

We carry out the subtraction in a column, we get zero, but we don’t write it down right away, we just remember its position, because we don’t know whether the division ends here, or whether we’ll have to repeat the steps of the algorithm again:

Now we see that we cannot write any number under the horizontal line to the right of the remembered position, since there are no digits in the record of the dividend in this column. Therefore, this completes the division by column, and we complete the entry:

  • Mathematics. Any textbooks for 1st, 2nd, 3rd, 4th grades of general education institutions.
  • Mathematics. Any textbooks for 5th grade of general education institutions.

With this math program you can divide polynomials by column.
The program for dividing a polynomial by a polynomial does not just give the answer to the problem, it provides a detailed solution with explanations, i.e. displays the solution process to test knowledge in mathematics and/or algebra.

This program can be useful for high school students in secondary schools when preparing for tests and exams, when testing knowledge before the Unified State Exam, and for parents to control the solution of many problems in mathematics and algebra.

Or maybe it’s too expensive for you to hire a tutor or buy new textbooks? Or do you just want to get your math or algebra homework done as quickly as possible? In this case, you can also use our programs with detailed solutions.

In this way, you can conduct your own training and/or training of your younger brothers or sisters, while the level of education in the field of solving problems increases. If you need or simplify polynomial or multiply polynomials

, then for this we have a separate program Simplification (multiplication) of a polynomial

For example: x^2-3x+5

For example: 3x-1

Divide polynomials
It was discovered that some scripts necessary to solve this problem were not loaded, and the program may not work.
You may have AdBlock enabled.

In this case, disable it and refresh the page.
JavaScript is disabled in your browser.
For the solution to appear, you need to enable JavaScript.

Here are instructions on how to enable JavaScript in your browser.
Because There are a lot of people willing to solve the problem, your request has been queued.
In a few seconds the solution will appear below. Please wait


sec... If you noticed an error in the solution
, then you can write about this in the Feedback Form. Do not forget indicate which task you decide what.



enter in the fields

Our games, puzzles, emulators:

A little theory.

Dividing a polynomial into a polynomial (binomial) by a column (corner) In algebra- an algorithm for dividing a polynomial f(x) by a polynomial (binomial) g(x), the degree of which is less than or equal to the degree of the polynomial f(x).

The polynomial-by-polynomial division algorithm is a generalized form of column division of numbers that can be easily implemented by hand.

For any polynomials \(f(x) \) and \(g(x) \), \(g(x) \neq 0 \), there are unique polynomials \(q(x) \) and \(r(x ) \), such that
\(\frac(f(x))(g(x)) = q(x)+\frac(r(x))(g(x)) \)
and \(r(x)\) has a lower degree than \(g(x)\).

The goal of the algorithm for dividing polynomials into a column (corner) is to find the quotient \(q(x) \) and the remainder \(r(x) \) for a given dividend \(f(x) \) and non-zero divisor \(g(x) \)

Example

Let's divide one polynomial by another polynomial (binomial) using a column (corner):
\(\large \frac(x^3-12x^2-42)(x-3) \)

The quotient and remainder of these polynomials can be found by performing the following steps:
1. Divide the first element of the dividend by the highest element of the divisor, place the result under the line \((x^3/x = x^2)\)

\(x\) \(-3 \)
\(x^2\)

3. Subtract the polynomial obtained after multiplication from the dividend, write the result under the line \((x^3-12x^2+0x-42-(x^3-3x^2)=-9x^2+0x-42) \)

\(x^3\) \(-12x^2\) \(+0x\) \(-42 \)
\(x^3\) \(-3x^2\)
\(-9x^2\) \(+0x\) \(-42 \)
\(x\) \(-3 \)
\(x^2\)

4. Repeat the previous 3 steps, using the polynomial written under the line as the dividend.

\(x^3\) \(-12x^2\) \(+0x\) \(-42 \)
\(x^3\) \(-3x^2\)
\(-9x^2\) \(+0x\) \(-42 \)
\(-9x^2\) \(+27x\)
\(-27x\) \(-42 \)
\(x\) \(-3 \)
\(x^2\) \(-9x\)

5. Repeat step 4.

\(x^3\) \(-12x^2\) \(+0x\) \(-42 \)
\(x^3\) \(-3x^2\)
\(-9x^2\) \(+0x\) \(-42 \)
\(-9x^2\) \(+27x\)
\(-27x\) \(-42 \)
\(-27x\) \(+81 \)
\(-123 \)
\(x\) \(-3 \)
\(x^2\) \(-9x\) \(-27 \)

6. End of the algorithm.
Thus, the polynomial \(q(x)=x^2-9x-27\) is the quotient of the division of polynomials, and \(r(x)=-123\) is the remainder of the division of polynomials.

The result of dividing polynomials can be written in the form of two equalities:
\(x^3-12x^2-42 = (x-3)(x^2-9x-27)-123\)
or
\(\large(\frac(x^3-12x^2-42)(x-3)) = x^2-9x-27 + \large(\frac(-123)(x-3)) \)

How to divide decimals by natural numbers? Let's look at the rule and its application using examples.

To divide a decimal fraction by a natural number, you need to:

1) divide the decimal fraction by the number, ignoring the comma;

2) when the division of the whole part is completed, put a comma in the quotient.

Examples.

Divide decimals:

To divide a decimal fraction by a natural number, divide without paying attention to the comma. 5 is not divisible by 6, so we put zero in the quotient. The division of the whole part is completed, we put a comma in the quotient. We take down the zero. Divide 50 by 6. Take 8. 6∙8=48. From 50 we subtract 48, the remainder is 2. We take away 4. We divide 24 by 6. We get 4. The remainder is zero, which means the division is over: 5.04: 6 = 0.84.

2) 19,26: 18

Divide the decimal fraction by a natural number, ignoring the comma. Divide 19 by 18. Take 1 each. The division of the whole part is completed, put a comma in the quotient. We subtract 18 from 19. The remainder is 1. We take away 2. 12 is not divisible by 18, and in the quotient we write zero. We take down 6. We divide 126 by 18, we get 7. The division is over: 19.26: 18 = 1.07.

Divide 86 by 25. Take 3 each. 25∙3=75. From 86 we subtract 75. The remainder is 11. The division of the whole part is completed, in the quotient we put a comma. We take down 5. We take 4 each. 25∙4=100. From 115 we subtract 100. The remainder is 15. We remove zero. We divide 150 by 25. We get 6. The division is over: 86.5: 25 = 3.46.

4) 0,1547: 17

Zero is not divisible by 17; we write zero in the quotient. The division of the whole part is completed, we put a comma in the quotient. We take down 1. 1 is not divisible by 17, we write zero in the quotient. We take down 5. 15 is not divisible by 17, we write zero in the quotient. We take down 4. We divide 154 by 17. We take 9 each. 17∙9=153. From 154 we subtract 153. The remainder is 1. We take away 7. We divide 17 by 17. We get 1. The division is over: 0.1547: 17 = 0.0091.

5) A decimal fraction can also be obtained when dividing two natural numbers.

When dividing 17 by 4, we take 4 each. The division of the whole part is completed, in the quotient we put a comma. 4∙4=16. From 17 we subtract 16. The remainder is 1. We remove zero. Divide 10 by 4. Take 2 each. 4∙2=8. From 10 we subtract 8. The remainder is 2. We remove zero. Divide 20 by 4. Take 5 each. Division is completed: 17: 4 = 4.25.

And a couple more examples of dividing decimals by natural numbers:

The easiest way to divide multi-digit numbers is with a column. Column division is also called corner division.

Before we begin to perform division by a column, we will consider in detail the very form of recording division by a column. First, write down the dividend and put a vertical line to the right of it:

Behind the vertical line, opposite the dividend, write the divisor and draw a horizontal line under it:

Under the horizontal line, the resulting quotient will be written step by step:

Intermediate calculations will be written under the dividend:

The full form of writing division by column is as follows:

How to divide by column

Let's say we need to divide 780 by 12, write the action in a column and proceed to division:

Column division is performed in stages. The first thing we need to do is determine the incomplete dividend. We look at the first digit of the dividend:

this number is 7, since it is less than the divisor, we cannot start division from it, which means we need to take another digit from the dividend, the number 78 is greater than the divisor, so we start division from it:

In our case the number 78 will be incomplete divisible, it is called incomplete because it is only a part of the divisible.

Having determined the incomplete dividend, we can find out how many digits will be in the quotient, for this we need to calculate how many digits are left in the dividend after the incomplete dividend, in our case there is only one digit - 0, this means that the quotient will consist of 2 digits.

Having found out the number of digits that should be in the quotient, you can put dots in its place. If, when completing the division, the number of digits turns out to be more or less than the indicated points, then an error was made somewhere:

Let's start dividing. We need to determine how many times 12 is contained in the number 78. To do this, we sequentially multiply the divisor by the natural numbers 1, 2, 3, ... until we get a number as close as possible to the incomplete dividend or equal to it, but not exceeding it. Thus, we get the number 6, write it under the divisor, and from 78 (according to the rules of column subtraction) we subtract 72 (12 · 6 = 72). After we subtract 72 from 78, the remainder is 6:

Please note that the remainder of the division shows us whether we have chosen the number correctly. If the remainder is equal to or greater than the divisor, then we did not choose the number correctly and we need to take a larger number.

To the resulting remainder - 6, add the next digit of the dividend - 0. As a result, we get an incomplete dividend - 60. Determine how many times 12 is contained in the number 60. We get the number 5, write it in the quotient after the number 6, and subtract 60 from 60 ( 12 5 = 60). The remainder is zero:

Since there are no more digits left in the dividend, it means 780 is divided by 12 completely. As a result of performing long division, we found the quotient - it is written under the divisor:

Let's consider an example when the quotient results in zeros. Let's say we need to divide 9027 by 9.

We determine the incomplete dividend - this is the number 9. We write 1 into the quotient and subtract 9 from 9. The remainder is zero. Usually, if in intermediate calculations the remainder is zero, it is not written down:

We take down the next digit of the dividend - 0. We remember that when dividing zero by any number there will be zero. We write zero into the quotient (0: 9 = 0) and subtract 0 from 0 in intermediate calculations. Usually, in order not to clutter up intermediate calculations, calculations with zero are not written:

We take down the next digit of the dividend - 2. In intermediate calculations it turned out that the incomplete dividend (2) is less than the divisor (9). In this case, write zero to the quotient and remove the next digit of the dividend:

We determine how many times 9 is contained in the number 27. We get the number 3, write it as a quotient, and subtract 27 from 27. The remainder is zero:

Since there are no more digits left in the dividend, it means that the number 9027 is divided by 9 completely:

Let's consider an example when the dividend ends in zeros. Let's say we need to divide 3000 by 6.

We determine the incomplete dividend - this is the number 30. We write 5 into the quotient and subtract 30 from 30. The remainder is zero. As already mentioned, it is not necessary to write zero in the remainder in intermediate calculations:

We take down the next digit of the dividend - 0. Since dividing zero by any number will result in zero, we write zero in the quotient and subtract 0 from 0 in intermediate calculations:

We take down the next digit of the dividend - 0. We write another zero into the quotient and subtract 0 from 0 in intermediate calculations. Since in intermediate calculations, calculations with zero are usually not written down, the entry can be shortened, leaving only the remainder - 0. Zero in the remainder in at the very end of the calculation is usually written to show that the division is complete:

Since there are no more digits left in the dividend, it means 3000 is divided by 6 completely:

Column division with remainder

Let's say we need to divide 1340 by 23.

We determine the incomplete dividend - this is the number 134. We write 5 into the quotient and subtract 115 from 134. The remainder is 19:

We take down the next digit of the dividend - 0. We determine how many times 23 is contained in the number 190. We get the number 8, write it into the quotient, and subtract 184 from 190. We get the remainder 6:

Since there are no more digits left in the dividend, the division is over. The result is an incomplete quotient of 58 and a remainder of 6:

1340: 23 = 58 (remainder 6)

It remains to consider an example of division with a remainder, when the dividend is less than the divisor. Let us need to divide 3 by 10. We see that 10 is never contained in the number 3, so we write 0 as a quotient and subtract 0 from 3 (10 · 0 = 0). Draw a horizontal line and write down the remainder - 3:

3: 10 = 0 (remainder 3)

Long division calculator

This calculator will help you perform long division. Simply enter the dividend and divisor and click the Calculate button.

A columnar calculator for Android devices will become a wonderful assistant for modern schoolchildren. The program not only gives the correct answer to a mathematical operation, but also clearly demonstrates its step-by-step solution. If you need more complex calculators, you can look at an advanced engineering calculator.

Peculiarities

The main feature of the program is the uniqueness of the calculation of mathematical operations. Displaying the calculation process in a column allows students to familiarize themselves with it in more detail, understand the solution algorithm, and not just get the finished result and copy it into a notebook. This feature has a huge advantage over other calculators because... Quite often at school, teachers require that intermediate calculations be written down in order to make sure that the student performs them in his head and really understands the algorithm for solving problems. By the way, we have another program of a similar kind -.

To start using the program, you need to download a column calculator for Android. You can do this on our website absolutely free of charge without additional registrations or SMS. After installation, the main page will open in the form of a notebook sheet in a cage, on which, in fact, the results of calculations and their detailed solution will be displayed. At the bottom there is a panel with buttons:

  1. Numbers.
  2. Signs of arithmetic operations.
  3. Deleting previously entered characters.

Input is carried out according to the same principle as on. The only difference is in the application interface - all mathematical calculations and their results are displayed in a virtual student notebook.

The application allows you to quickly and correctly perform standard mathematical calculations for a schoolchild:

  • multiplication;
  • division;
  • addition;
  • subtraction.

A nice addition to the app is the daily math homework reminder feature. If you want, do your homework. To enable it, go to the settings (click the gear-shaped button) and check the reminder box.

Advantages and disadvantages

  1. Helps the student not only quickly obtain the correct result of mathematical calculations, but also understand the principle of calculation itself.
  2. A very simple, intuitive interface for every user.
  3. You can install the application even on the most budget Android device with operating system 2.2 and later.
  4. The calculator saves a history of mathematical calculations performed, which can be cleared at any time.

The calculator is limited in mathematical operations, so it cannot be used for complex calculations that an engineering calculator could handle. However, given the purpose of the application itself - to clearly demonstrate to primary school students the principle of columnar calculations, this should not be considered a disadvantage.

The application will also be an excellent assistant not only for schoolchildren, but also for parents who want to interest their child in mathematics and teach him to perform calculations correctly and consistently. If you have already used the Column Calculator application, leave your impressions below in the comments.