Composition of the earth's atmosphere as a percentage. The structure of the atmosphere

The gaseous envelope surrounding our planet Earth, known as the atmosphere, consists of five main layers. These layers originate on the surface of the planet, from sea level (sometimes below) and rise to outer space in the following sequence:

  • Troposphere;
  • Stratosphere;
  • Mesosphere;
  • Thermosphere;
  • Exosphere.

Diagram of the main layers of the Earth's atmosphere

In between each of these main five layers are transition zones called "pauses" where changes in air temperature, composition and density occur. Together with pauses, the Earth's atmosphere includes a total of 9 layers.

Troposphere: where weather occurs

Of all the layers of the atmosphere, the troposphere is the one with which we are most familiar (whether you realize it or not), since we live on its bottom - the surface of the planet. It envelops the surface of the Earth and extends upward for several kilometers. The word troposphere means "change of the globe." A very appropriate name, since this layer is where our everyday weather occurs.

Starting from the surface of the planet, the troposphere rises to a height of 6 to 20 km. The lower third of the layer, closest to us, contains 50% of all atmospheric gases. This is the only part of the entire atmosphere that breathes. Due to the fact that the air is heated from below by the earth's surface, which absorbs the thermal energy of the Sun, the temperature and pressure of the troposphere decrease with increasing altitude.

At the top there is a thin layer called the tropopause, which is just a buffer between the troposphere and the stratosphere.

Stratosphere: home of the ozone

The stratosphere is the next layer of the atmosphere. It extends from 6-20 km to 50 km above the Earth's surface. This is the layer in which most commercial airliners fly and hot air balloons travel.

Here the air does not flow up and down, but moves parallel to the surface in very fast air currents. As you rise, the temperature increases, thanks to the abundance of naturally occurring ozone (O3), a byproduct of solar radiation and oxygen, which has the ability to absorb the sun's harmful ultraviolet rays (any increase in temperature with altitude in meteorology is known as an "inversion") .

Because the stratosphere has warmer temperatures at the bottom and cooler temperatures at the top, convection (vertical movement of air masses) is rare in this part of the atmosphere. In fact, you can view a storm raging in the troposphere from the stratosphere because the layer acts as a convection cap that prevents storm clouds from penetrating.

After the stratosphere there is again a buffer layer, this time called the stratopause.

Mesosphere: middle atmosphere

The mesosphere is located approximately 50-80 km from the Earth's surface. The upper mesosphere is the coldest natural place on Earth, where temperatures can drop below -143°C.

Thermosphere: upper atmosphere

After the mesosphere and mesopause comes the thermosphere, located between 80 and 700 km above the surface of the planet, and contains less than 0.01% of the total air in the atmospheric envelope. Temperatures here reach up to +2000° C, but due to the extreme thinness of the air and the lack of gas molecules to transfer heat, these high temperatures are perceived as very cold.

Exosphere: the boundary between the atmosphere and space

At an altitude of about 700-10,000 km above the earth's surface is the exosphere - the outer edge of the atmosphere, bordering space. Here weather satellites orbit the Earth.

What about the ionosphere?

The ionosphere is not a separate layer, but in fact the term is used to refer to the atmosphere between 60 and 1000 km altitude. It includes the uppermost parts of the mesosphere, the entire thermosphere and part of the exosphere. The ionosphere gets its name because in this part of the atmosphere the radiation from the Sun is ionized when it passes through the Earth's magnetic fields at and. This phenomenon is observed from the ground as the northern lights.

Earth's atmosphere

Atmosphere(from. Old Greekἀτμός - steam and σφαῖρα - ball) - gas shell ( geosphere), surrounding the planet Earth. Its inner surface covers hydrosphere and partially bark, the outer one borders on the near-Earth part of outer space.

The set of branches of physics and chemistry that study the atmosphere is usually called atmospheric physics. The atmosphere determines weather on the surface of the Earth, studying weather meteorology, and long-term variations climate - climatology.

The structure of the atmosphere

The structure of the atmosphere

Troposphere

Its upper limit is at an altitude of 8-10 km in polar, 10-12 km in temperate and 16-18 km in tropical latitudes; lower in winter than in summer. The lower, main layer of the atmosphere. Contains more than 80% of the total mass of atmospheric air and about 90% of all water vapor present in the atmosphere. In the troposphere are highly developed turbulence And convection, arise clouds, are developing cyclones And anticyclones. Temperature decreases with increasing altitude with average vertical gradient 0.65°/100 m

The following are accepted as “normal conditions” at the Earth’s surface: density 1.2 kg/m3, barometric pressure 101.35 kPa, temperature plus 20 °C and relative humidity 50%. These conditional indicators have purely engineering significance.

Stratosphere

A layer of the atmosphere located at an altitude of 11 to 50 km. Characterized by a slight change in temperature in the 11-25 km layer (lower layer of the stratosphere) and an increase in the 25-40 km layer from −56.5 to 0.8 ° WITH(upper layer of the stratosphere or region inversions). Having reached a value of about 273 K (almost 0 ° C) at an altitude of about 40 km, the temperature remains constant up to an altitude of about 55 km. This region of constant temperature is called stratopause and is the boundary between the stratosphere and mesosphere.

Stratopause

The boundary layer of the atmosphere between the stratosphere and mesosphere. In the vertical temperature distribution there is a maximum (about 0 °C).

Mesosphere

Earth's atmosphere

Mesosphere begins at an altitude of 50 km and extends to 80-90 km. Temperature decreases with height with an average vertical gradient of (0.25-0.3)°/100 m. The main energy process is radiant heat transfer. Complex photochemical processes involving free radicals, vibrationally excited molecules, etc., cause the glow of the atmosphere.

Mesopause

Transitional layer between the mesosphere and thermosphere. There is a minimum in the vertical temperature distribution (about -90 °C).

Karman Line

The height above sea level, which is conventionally accepted as the boundary between the Earth's atmosphere and space.

Thermosphere

Main article: Thermosphere

The upper limit is about 800 km. The temperature rises to altitudes of 200-300 km, where it reaches values ​​of the order of 1500 K, after which it remains almost constant to high altitudes. Under the influence of ultraviolet and x-ray solar radiation and cosmic radiation, air ionization occurs (“ auroras") - main areas ionosphere lie inside the thermosphere. At altitudes above 300 km, atomic oxygen predominates.

Atmospheric layers up to an altitude of 120 km

Exosphere (scattering sphere)

Exosphere- dispersion zone, the outer part of the thermosphere, located above 700 km. The gas in the exosphere is very rarefied, and from here its particles leak into interplanetary space ( dissipation).

Up to an altitude of 100 km, the atmosphere is a homogeneous, well-mixed mixture of gases. In higher layers, the distribution of gases by height depends on their molecular weights; the concentration of heavier gases decreases faster with distance from the Earth's surface. Due to the decrease in gas density, the temperature drops from 0 °C in the stratosphere to −110 °C in the mesosphere. However, the kinetic energy of individual particles at altitudes of 200-250 km corresponds to a temperature of ~1500 °C. Above 200 km, significant fluctuations in temperature and gas density in time and space are observed.

At an altitude of about 2000-3000 km, the exosphere gradually turns into the so-called near space vacuum, which is filled with highly rarefied particles of interplanetary gas, mainly hydrogen atoms. But this gas represents only part of the interplanetary matter. The other part consists of dust particles of cometary and meteoric origin. In addition to extremely rarefied dust particles, electromagnetic and corpuscular radiation of solar and galactic origin penetrates into this space.

The troposphere accounts for about 80% of the mass of the atmosphere, the stratosphere - about 20%; the mass of the mesosphere is no more than 0.3%, the thermosphere is less than 0.05% of the total mass of the atmosphere. Based on the electrical properties in the atmosphere, the neutronosphere and ionosphere are distinguished. It is currently believed that the atmosphere extends to an altitude of 2000-3000 km.

Depending on the composition of the gas in the atmosphere, they emit homosphere And heterosphere. Heterosphere - This is the area where gravity affects the separation of gases, since their mixing at such an altitude is negligible. This implies a variable composition of the heterosphere. Below it lies a well-mixed, homogeneous part of the atmosphere, called homosphere. The boundary between these layers is called turbo pause, it lies at an altitude of about 120 km.

Physical properties

The thickness of the atmosphere is approximately 2000 - 3000 km from the Earth's surface. Total mass air- (5.1-5.3)×10 18 kg. Molar mass clean dry air is 28.966. Pressure at 0 °C at sea level 101.325 kPa; critical temperature?140.7 °C; critical pressure 3.7 MPa; C p 1.0048×10 3 J/(kg K) (at 0 °C), C v 0.7159×10 3 J/(kg K) (at 0 °C). The solubility of air in water at 0 °C is 0.036%, at 25 °C - 0.22%.

Physiological and other properties of the atmosphere

Already at an altitude of 5 km above sea level, an untrained person develops oxygen starvation and without adaptation, a person’s performance is significantly reduced. The physiological zone of the atmosphere ends here. Human breathing becomes impossible at an altitude of 15 km, although up to approximately 115 km the atmosphere contains oxygen.

The atmosphere supplies us with the oxygen necessary for breathing. However, due to the drop in the total pressure of the atmosphere, as you rise to altitude, the partial pressure of oxygen decreases accordingly.

The human lungs constantly contain about 3 liters of alveolar air. Partial pressure oxygen in alveolar air at normal atmospheric pressure is 110 mm Hg. Art., carbon dioxide pressure - 40 mm Hg. Art., and water vapor - 47 mm Hg. Art. With increasing altitude, oxygen pressure drops, and the total vapor pressure of water and carbon dioxide in the lungs remains almost constant - about 87 mm Hg. Art. The supply of oxygen to the lungs will completely stop when the ambient air pressure becomes equal to this value.

At an altitude of about 19-20 km, the atmospheric pressure drops to 47 mm Hg. Art. Therefore, at this altitude, water and interstitial fluid begin to boil in the human body. Outside the pressurized cabin at these altitudes, death occurs almost instantly. Thus, from the point of view of human physiology, “space” begins already at an altitude of 15-19 km.

Dense layers of air - the troposphere and stratosphere - protect us from the damaging effects of radiation. With sufficient rarefaction of air, at altitudes of more than 36 km, ionizing agents have an intense effect on the body. radiation- primary cosmic rays; At altitudes of more than 40 km, the ultraviolet part of the solar spectrum is dangerous for humans.

As we rise to an ever greater height above the Earth's surface, such familiar phenomena observed in the lower layers of the atmosphere as the propagation of sound, the emergence of aerodynamic lift and resistance, heat transfer convection and etc.

In rarefied layers of air, distribution sound turns out to be impossible. Up to altitudes of 60-90 km, it is still possible to use air resistance and lift for controlled aerodynamic flight. But starting from altitudes of 100-130 km, concepts familiar to every pilot numbers M And sound barrier lose their meaning, there is a conditional Karman Line beyond which begins the sphere of purely ballistic flight, which can only be controlled using reactive forces.

At altitudes above 100 km, the atmosphere is deprived of another remarkable property - the ability to absorb, conduct and transmit thermal energy by convection (i.e. by mixing air). This means that various elements of equipment on the orbital space station will not be able to be cooled from the outside in the same way as is usually done on an airplane - with the help of air jets and air radiators. At such a height, as in space generally, the only way to transfer heat is thermal radiation.

Atmospheric composition

Composition of dry air

The Earth's atmosphere consists mainly of gases and various impurities (dust, water droplets, ice crystals, sea salts, combustion products).

The concentration of gases that make up the atmosphere is almost constant, with the exception of water (H 2 O) and carbon dioxide (CO 2).

Composition of dry air

Nitrogen

Oxygen

Argon

Water

Carbon dioxide

Neon

Helium

Methane

Krypton

Hydrogen

Xenon

Nitrous oxide

In addition to the gases indicated in the table, the atmosphere contains SO 2, NH 3, CO, ozone, hydrocarbons, HCl, HF, couples Hg, I 2 , and also NO and many other gases in small quantities. The troposphere constantly contains a large number of suspended solid and liquid particles ( aerosol).

History of atmospheric formation

According to the most common theory, the Earth's atmosphere has had four different compositions over time. Initially it consisted of light gases ( hydrogen And helium), captured from interplanetary space. This is the so-called primary atmosphere(about four billion years ago). At the next stage, active volcanic activity led to the saturation of the atmosphere with gases other than hydrogen (carbon dioxide, ammonia, water vapor). This is how it was formed secondary atmosphere(about three billion years before the present day). This atmosphere was restorative. Further, the process of atmosphere formation was determined by the following factors:

    leakage of light gases (hydrogen and helium) into interplanetary space;

    chemical reactions occurring in the atmosphere under the influence of ultraviolet radiation, lightning discharges and some other factors.

Gradually these factors led to the formation tertiary atmosphere, characterized by a much lower content of hydrogen and a much higher content of nitrogen and carbon dioxide (formed as a result of chemical reactions from ammonia and hydrocarbons).

Nitrogen

The formation of a large amount of N 2 is due to the oxidation of the ammonia-hydrogen atmosphere by molecular O 2, which began to come from the surface of the planet as a result of photosynthesis, starting 3 billion years ago. N2 is also released into the atmosphere as a result of denitrification of nitrates and other nitrogen-containing compounds. Nitrogen is oxidized by ozone to NO in the upper atmosphere.

Nitrogen N 2 reacts only under specific conditions (for example, during a lightning discharge). The oxidation of molecular nitrogen by ozone during electrical discharges is used in the industrial production of nitrogen fertilizers. They can oxidize it with low energy consumption and convert it into a biologically active form. cyanobacteria (blue-green algae) and nodule bacteria that form rhizobial symbiosis With legumes plants, so-called green manure.

Oxygen

The composition of the atmosphere began to change radically with the appearance on Earth living organisms, as a result photosynthesis accompanied by the release of oxygen and absorption of carbon dioxide. Initially, oxygen was spent on the oxidation of reduced compounds - ammonia, hydrocarbons, nitrous form gland contained in the oceans, etc. At the end of this stage, the oxygen content in the atmosphere began to increase. Gradually, a modern atmosphere with oxidizing properties formed. Since this caused serious and abrupt changes in many processes occurring in atmosphere, lithosphere And biosphere, this event was called Oxygen disaster.

During Phanerozoic the composition of the atmosphere and oxygen content underwent changes. They correlated primarily with the rate of deposition of organic sediment. Thus, during periods of coal accumulation, the oxygen content in the atmosphere apparently significantly exceeded the modern level.

Carbon dioxide

The content of CO 2 in the atmosphere depends on volcanic activity and chemical processes in the earth's shells, but most of all - on the intensity of biosynthesis and decomposition of organic matter in biosphere Earth. Almost the entire current biomass of the planet (about 2.4 × 10 12 tons ) is formed due to carbon dioxide, nitrogen and water vapor contained in the atmospheric air. Buried in ocean, V swamps and in forests organic matter turns into coal, oil And natural gas. (cm. Geochemical carbon cycle)

Noble gases

Source of inert gases - argon, helium And krypton- volcanic eruptions and decay of radioactive elements. The Earth in general and the atmosphere in particular are depleted of inert gases compared to space. It is believed that the reason for this lies in the continuous leakage of gases into interplanetary space.

Air pollution

Recently, the evolution of the atmosphere has begun to be influenced by Human. The result of his activities was a constant significant increase in the content of carbon dioxide in the atmosphere due to the combustion of hydrocarbon fuels accumulated in previous geological eras. Huge amounts of CO 2 are consumed during photosynthesis and absorbed by the world's oceans. This gas enters the atmosphere due to the decomposition of carbonate rocks and organic substances of plant and animal origin, as well as due to volcanism and human industrial activity. Over the past 100 years, the content of CO 2 in the atmosphere has increased by 10%, with the bulk (360 billion tons) coming from fuel combustion. If the growth rate of fuel combustion continues, then in the next 50 - 60 years the amount of CO 2 in the atmosphere will double and could lead to global climate change.

Fuel combustion is the main source of polluting gases ( CO, NO, SO 2 ). Sulfur dioxide is oxidized by atmospheric oxygen to SO 3 in the upper layers of the atmosphere, which in turn interacts with water and ammonia vapor, and the resulting sulfuric acid (H 2 SO 4 ) And ammonium sulfate ((NH 4 ) 2 SO 4 ) return to the surface of the Earth in the form of the so-called. acid rain. Usage internal combustion engines leads to significant atmospheric pollution with nitrogen oxides, hydrocarbons and lead compounds ( tetraethyl lead Pb(CH 3 CH 2 ) 4 ) ).

Aerosol pollution of the atmosphere is caused by both natural causes (volcanic eruptions, dust storms, entrainment of drops of sea water and plant pollen, etc.) and human economic activities (mining ores and building materials, burning fuel, making cement, etc.). Intense large-scale release of particulate matter into the atmosphere is one of the possible causes of climate change on the planet.

The atmosphere is the outer shell of celestial bodies. On different planets it differs in composition, chemical and physical properties. What are the main properties of the Earth's atmosphere? What does it consist of? How and when did it arise? Let's find out about this further.

Atmospheric formation

The atmosphere is a mixture of gases that envelop the planet from the outside and are held in place by its gravitational forces. At the time of its formation, our planet did not yet have a gaseous shell. It was formed a little later and managed to change several times. It is not completely known what the basic properties of the atmosphere were then.

Scientists suggest that the very first atmosphere was picked up from the solar nebula and consisted of helium and hydrogen. The planet's high temperatures and the effects of solar wind quickly destroyed this shell.

The next atmosphere was formed thanks to volcanoes that released gases from it. It was thin and consisted of greenhouse gases (methane, carbon dioxide, ammonia), water vapor and acids.

Two billion years ago, the state of the atmosphere began to transform into the present one. External processes (weathering, solar activity) on the planet and the first bacteria and algae took part in this, due to their release of oxygen.

Composition and properties of the atmosphere

The gas shell of our planet does not have a clear edge. Its outer contour is blurred and gradually passes into outer space, merging with it into a homogeneous mass. The inner edge of the shell is in contact with the earth's crust and the Earth's hydrosphere.

The basic properties of the atmosphere are largely determined by its composition. Most of it is represented by gases. The main share is accounted for by nitrogen (75.5%) and oxygen (23.1%). In addition to them, atmospheric air consists of argon, carbon dioxide, hydrogen, methane, helium, xenon, etc.

The concentration of substances remains virtually unchanged. Variable values ​​are typical for water and are determined by the amount of vegetation. Water is contained in the form of water vapor. Its amount varies depending on geographic latitudes and amounts to up to 2.5%. The atmosphere also contains combustion products, sea salt, dust impurities, and ice in the form of small crystals.

Physical properties of the atmosphere

The main properties of the atmosphere are pressure, humidity, temperature and density. In each layer of the atmosphere their values ​​differ. The air of the Earth's shell is a multitude of molecules of various substances. Gravitational forces keep them within the planet, pulling them closer to its surface.

There are more molecules at the bottom, so the density and pressure are greater there. They decrease with height, and in outer space they become almost invisible. In the lower layers of the atmosphere, pressure decreases by 1 mm Hg. Art. every 10 meters.

Unlike the surface of the planet, the atmosphere is not heated by the Sun. Therefore, the closer to Earth, the higher the temperature. For every hundred meters it decreases by about 0.6 degrees. In the upper part of the troposphere it reaches -56 degrees.

Air parameters are greatly influenced by the water content in it, that is, humidity. The total air mass of the planet is (5.1-5.3) 10 18 kg, where the share of water vapor is 1.27 10 16 kg. Since the properties of the atmosphere differ in different areas, standard values ​​have been derived that are accepted as “normal conditions” on the Earth’s surface:

The structure of the gas shell of the Earth

The nature of the gas shell changes with altitude. Depending on the basic properties of the atmosphere, it is divided into several layers:

  • troposphere;
  • stratosphere;
  • mesosphere;
  • thermosphere;
  • exosphere.

The main parameter for differentiation is temperature. Between the layers there are boundary areas called pauses, in which a constant temperature is recorded.

The troposphere is the lowest layer. Its border runs at an altitude of 8 to 18 kilometers, depending on latitude. It is highest at the equator line. Approximately 80% of the atmospheric air mass falls in the troposphere.

The outer layer of the atmosphere is represented by the exosphere. Its lower boundary and thickness depend on the activity of the Sun. On Earth, the exosphere begins at an altitude of 500 to 1000 kilometers and reaches one hundred thousand kilometers. At the bottom it is saturated with oxygen and nitrogen, at the top - with hydrogen and other light gases.

The role of the atmosphere

The atmosphere is the air we breathe. Without it, a person cannot live even five minutes. It saturates all cells of plants and animals, promoting the exchange of energies between the body and the external environment.

The atmosphere is the planet's filter. Passing through it, solar radiation is scattered. This reduces its intensity and the harm it can cause in concentrated form. The shell plays the role of the Earth's shield, in the upper layers of which many meteorites and comets burn up before reaching the surface of the planet.

Temperature, density, humidity and pressure of the atmosphere form climate and weather conditions. The atmosphere is involved in the distribution of heat on the planet. Without it, the temperature would fluctuate within two hundred degrees.

The Earth's shell participates in the cycle of substances, is the habitat of some living beings, and contributes to the transmission of sounds. Its absence would make it impossible for life to exist on the planet.

Blue Planet...

This topic should have been one of the first to appear on the site. After all, helicopters are atmospheric aircraft. Earth's atmosphere– their habitat, so to speak:-). A physical properties of air This is precisely what determines the quality of this habitat :-). That is, this is one of the basics. And they always write about the basis first. But I realized this only now. However, as you know, it’s better late than never... Let’s touch on this issue, without getting into the weeds and unnecessary complications :-).

So… Earth's atmosphere. This is the gaseous shell of our blue planet. Everyone knows this name. Why blue? Simply because the “blue” (as well as blue and violet) component of sunlight (spectrum) is most well scattered in the atmosphere, thereby coloring it bluish-bluish, sometimes with a hint of violet tone (on a sunny day, of course :-)) .

Composition of the Earth's atmosphere.

The composition of the atmosphere is quite broad. I will not list all the components in the text; there is a good illustration for this. The composition of all these gases is almost constant, with the exception of carbon dioxide (CO 2 ). In addition, the atmosphere necessarily contains water in the form of vapor, suspended droplets or ice crystals. The amount of water is not constant and depends on temperature and, to a lesser extent, air pressure. In addition, the Earth’s atmosphere (especially the current one) contains a certain amount of, I would say, “all sorts of nasty things” :-). These are SO 2, NH 3, CO, HCl, NO, in addition there are mercury vapors Hg. True, all this is there in small quantities, thank God :-).

Earth's atmosphere It is customary to divide it into several successive zones in height above the surface.

The first, closest to the earth, is the troposphere. This is the lowest and, so to speak, main layer for life activities of various types. It contains 80% of the mass of all atmospheric air (although by volume it is only about 1% of the entire atmosphere) and about 90% of all atmospheric water. The bulk of all the winds, clouds, rain and snow 🙂 come from there. The troposphere extends to altitudes of about 18 km in tropical latitudes and up to 10 km in polar latitudes. The air temperature in it drops with an increase in height by approximately 0.65º for every 100 m.

Atmospheric zones.

Zone two - stratosphere. It must be said that between the troposphere and the stratosphere there is another narrow zone - the tropopause. It stops the temperature falling with height. The tropopause has an average thickness of 1.5-2 km, but its boundaries are unclear and the troposphere often overlaps the stratosphere.

So the stratosphere has an average height of 12 km to 50 km. The temperature in it remains unchanged up to 25 km (about -57ºС), then somewhere up to 40 km it rises to approximately 0ºС and then remains unchanged up to 50 km. The stratosphere is a relatively calm part of the earth's atmosphere. There are practically no adverse weather conditions in it. It is in the stratosphere that the famous ozone layer is located at altitudes from 15-20 km to 55-60 km.

This is followed by a small boundary layer, the stratopause, in which the temperature remains around 0ºC, and then the next zone is the mesosphere. It extends to altitudes of 80-90 km, and in it the temperature drops to about 80ºC. In the mesosphere, small meteors usually become visible, which begin to glow in it and burn up there.

The next narrow interval is the mesopause and beyond it the thermosphere zone. Its height is up to 700-800 km. Here the temperature begins to rise again and at altitudes of about 300 km can reach values ​​of the order of 1200ºС. Then it remains constant. Inside the thermosphere, up to an altitude of about 400 km, is the ionosphere. Here the air is highly ionized due to exposure to solar radiation and has high electrical conductivity.

The next and, in general, the last zone is the exosphere. This is the so-called scattering zone. Here, there is mainly very rarefied hydrogen and helium (with a predominance of hydrogen). At altitudes of about 3000 km, the exosphere passes into the near-space vacuum.

Something like this. Why approximately? Because these layers are quite conventional. Various changes in altitude, composition of gases, water, temperature, ionization, and so on are possible. In addition, there are many more terms that define the structure and state of the earth’s atmosphere.

For example, homosphere and heterosphere. In the first, atmospheric gases are well mixed and their composition is quite homogeneous. The second is located above the first and there is practically no such mixing there. The gases in it are separated by gravity. The boundary between these layers is located at an altitude of 120 km, and it is called turbopause.

Let’s finish with the terms, but I’ll definitely add that it is conventionally accepted that the boundary of the atmosphere is located at an altitude of 100 km above sea level. This border is called the Karman Line.

I will add two more pictures to illustrate the structure of the atmosphere. The first one, however, is in German, but it is complete and quite easy to understand :-). It can be enlarged and seen clearly. The second shows the change in atmospheric temperature with altitude.

The structure of the Earth's atmosphere.

Air temperature changes with altitude.

Modern manned orbital spacecraft fly at altitudes of about 300-400 km. However, this is no longer aviation, although the area, of course, is closely related in a certain sense, and we will certainly talk about it later :-).

The aviation zone is the troposphere. Modern atmospheric aircraft can also fly in the lower layers of the stratosphere. For example, the practical ceiling of the MIG-25RB is 23,000 m.

Flight in the stratosphere.

And exactly physical properties of air The troposphere determines what the flight will be like, how effective the aircraft’s control system will be, how turbulence in the atmosphere will affect it, and how the engines will operate.

The first main property is air temperature. In gas dynamics, it can be determined on the Celsius scale or on the Kelvin scale.

Temperature t 1 at a given height N on the Celsius scale is determined by:

t 1 = t - 6.5N, Where t– air temperature near the ground.

Temperature on the Kelvin scale is called absolute temperature, zero on this scale is absolute zero. At absolute zero, the thermal motion of molecules stops. Absolute zero on the Kelvin scale corresponds to -273º on the Celsius scale.

Accordingly the temperature T on high N on the Kelvin scale is determined by:

T = 273K + t - 6.5H

Air pressure. Atmospheric pressure is measured in Pascals (N/m2), in the old system of measurement in atmospheres (atm.). There is also such a thing as barometric pressure. This is the pressure measured in millimeters of mercury using a mercury barometer. Barometric pressure (pressure at sea level) equal to 760 mmHg. Art.

called standard. In physics 1 atm. exactly equal to 760 mm Hg. Air density

. In aerodynamics, the most often used concept is the mass density of air. This is the mass of air in 1 m3 of volume. The density of air changes with altitude, the air becomes more rarefied. Air humidity . Shows the amount of water in the air. There is a concept " relative humidity

Due to the fact that aircraft flights occur under different atmospheric conditions, their flight and aerodynamic parameters in the same flight mode may be different. Therefore, to correctly estimate these parameters, we introduced International Standard Atmosphere (ISA). It shows the change in the state of air with increasing altitude.

The basic parameters of the air condition at zero humidity are taken as follows:

pressure P = 760 mm Hg. Art. (101.3 kPa);

temperature t = +15°C (288 K);

mass density ρ = 1.225 kg/m 3 ;

For the ISA it is accepted (as mentioned above :-)) that the temperature drops in the troposphere by 0.65º for every 100 meters of altitude.

Standard atmosphere (example up to 10,000 m).

MSA tables are used for calibrating instruments, as well as for navigational and engineering calculations.

Physical properties of air also include such concepts as inertia, viscosity and compressibility.

Inertia is a property of air that characterizes its ability to resist changes in its state of rest or uniform linear motion. . A measure of inertia is the mass density of air. The higher it is, the higher the inertia and resistance force of the medium when the aircraft moves in it.

Viscosity Determines the air friction resistance when the aircraft is moving.

Compressibility determines the change in air density with changes in pressure. At low speeds of the aircraft (up to 450 km/h), there is no change in pressure when the air flow flows around it, but at high speeds the compressibility effect begins to appear. Its influence is especially noticeable at supersonic speeds. This is a separate area of ​​aerodynamics and a topic for a separate article :-).

Well, that seems to be all for now... It's time to finish this slightly tedious enumeration, which, however, cannot be avoided :-). Earth's atmosphere, its parameters, physical properties of air are as important for the aircraft as the parameters of the device itself, and they could not be ignored.

Bye, until next meetings and more interesting topics :) ...

P.S.

For dessert, I suggest watching a video filmed from the cockpit of a MIG-25PU twin during its flight into the stratosphere. Apparently it was filmed by a tourist who has money for such flights :-). Mostly everything was filmed through the windshield. Pay attention to the color of the sky...

The name “atmosphere” itself is formed from two words of Greek origin, translated into Russian they mean “steam” and “ball”. And if you look at the exact definition, you can read the following: “The atmosphere is the air shell of the planet Earth, which rushes along with it in outer space.” It developed in parallel with the geological and geochemical processes that took place on the planet. And today all processes occurring in living organisms depend on it. Without an atmosphere, the planet would become a lifeless desert, like the Moon.

What does it consist of?

The question of what the atmosphere is and what elements are included in it has interested people for a long time. The main components of this shell were already known in 1774. They were installed by Antoine Lavoisier. He discovered that the composition of the atmosphere was mostly composed of nitrogen and oxygen. Over time, its components were refined. And now it is known that it contains many other gases, as well as water and dust.

Let's take a closer look at what makes up the Earth's atmosphere near its surface. The most common gas is nitrogen. It contains slightly more than 78 percent. But, despite such a large amount, nitrogen is practically inactive in the air.

The next element in quantity and very important in importance is oxygen. This gas contains almost 21%, and it exhibits very high activity. Its specific function is to oxidize dead organic matter, which decomposes as a result of this reaction.

Low but important gases

The third gas that is part of the atmosphere is argon. It's a little less than one percent. After it come carbon dioxide with neon, helium with methane, krypton with hydrogen, xenon, ozone and even ammonia. But there are so few of them that the percentage of such components is equal to hundredths, thousandths and millionths. Of these, only carbon dioxide plays a significant role, since it is the building material that plants need for photosynthesis. Its other important function is to block radiation and absorb some of the sun's heat.

Another small but important gas, ozone exists to trap ultraviolet radiation coming from the Sun. Thanks to this property, all life on the planet is reliably protected. On the other hand, ozone affects the temperature of the stratosphere. Due to the fact that it absorbs this radiation, the air heats up.

The constancy of the quantitative composition of the atmosphere is maintained by non-stop mixing. Its layers move both horizontally and vertically. Therefore, anywhere on the globe there is enough oxygen and no excess carbon dioxide.

What else is in the air?

It should be noted that steam and dust can be found in the airspace. The latter consists of pollen and soil particles; in the city they are joined by impurities of solid emissions from exhaust gases.

But there is a lot of water in the atmosphere. Under certain conditions, it condenses and clouds and fog appear. In essence, these are the same thing, only the first ones appear high above the surface of the Earth, and the last one spreads along it. Clouds take different shapes. This process depends on the height above the Earth.

If they formed 2 km above land, then they are called layered. It is from them that rain pours on the ground or snow falls. Above them, cumulus clouds form up to a height of 8 km. They are always the most beautiful and picturesque. They are the ones who look at them and wonder what they look like. If such formations appear in the next 10 km, they will be very light and airy. Their name is feathery.

What layers is the atmosphere divided into?

Although they have very different temperatures from each other, it is very difficult to tell at what specific height one layer begins and the other ends. This division is very conditional and is approximate. However, the layers of the atmosphere still exist and perform their functions.

The lowest part of the air shell is called the troposphere. Its thickness increases as it moves from the poles to the equator from 8 to 18 km. This is the warmest part of the atmosphere because the air in it is heated by the earth's surface. Most of the water vapor is concentrated in the troposphere, which is why clouds form, precipitation falls, thunderstorms rumble and winds blow.

The next layer is about 40 km thick and is called the stratosphere. If an observer moves into this part of the air, he will find that the sky has turned purple. This is explained by the low density of the substance, which practically does not scatter the sun's rays. It is in this layer that jet planes fly. All open spaces are open for them, since there are practically no clouds. Inside the stratosphere there is a layer consisting of large amounts of ozone.

After it come the stratopause and mesosphere. The latter is about 30 km thick. It is characterized by a sharp decrease in air density and temperature. The sky appears black to the observer. Here you can even watch the stars during the day.

Layers in which there is practically no air

The structure of the atmosphere continues with a layer called the thermosphere - the longest of all the others, its thickness reaches 400 km. This layer is distinguished by its enormous temperature, which can reach 1700 °C.

The last two spheres are often combined into one and called the ionosphere. This is due to the fact that reactions occur in them with the release of ions. It is these layers that make it possible to observe such a natural phenomenon as the northern lights.

The next 50 km from the Earth are allocated to the exosphere. This is the outer shell of the atmosphere. It disperses air particles into space. Weather satellites usually move in this layer.

The Earth's atmosphere ends with the magnetosphere. It is she who sheltered most of the planet’s artificial satellites.

After all that has been said, there should be no questions left about what the atmosphere is. If you have doubts about its necessity, they can be easily dispelled.

The meaning of atmosphere

The main function of the atmosphere is to protect the planet's surface from overheating during the day and excessive cooling at night. The next important purpose of this shell, which no one will dispute, is to supply oxygen to all living beings. Without this they would suffocate.

Most meteorites burn up in the upper layers, never reaching the Earth's surface. And people can admire the flying lights, mistaking them for shooting stars. Without an atmosphere, the entire Earth would be littered with craters. And protection from solar radiation has already been discussed above.

How does a person influence the atmosphere?

Very negative. This is due to the growing activity of people. The main share of all negative aspects falls on industry and transport. By the way, it is cars that emit almost 60% of all pollutants that penetrate into the atmosphere. The remaining forty are divided between energy and industry, as well as waste disposal industries.

The list of harmful substances that daily replenish the air is very long. Due to transport in the atmosphere there are: nitrogen and sulfur, carbon, blue and soot, as well as a strong carcinogen that causes skin cancer - benzopyrene.

The industry accounts for the following chemical elements: sulfur dioxide, hydrocarbons and hydrogen sulfide, ammonia and phenol, chlorine and fluorine. If the process continues, then soon the answers to the questions: “What is the atmosphere? What does it consist of? will be completely different.