Применение ниобия китаем в выплавке стали. Ниобий — свойства, применение и сплавы ниобия. Физические и химические свойства

Ниобий (лат. Niobium), Nb, химический элемент V группы периодической системы Менделеева; атомный номер 41, атомная масса 92,9064; металл серо-стального цвета. Элемент имеет один природный изотоп 93 Nb.

Ниобий открыт в 1801 году английским ученым Ч. Хатчетом (1765-1847) в минерале, найденном в Колумбии, и назван им "колумбием". В 1844 году немецкий химик Г. Роэз (1795-1864) обнаружил "новый" элемент и назвал его "ниобием" в честь дочери Тантала Ниобы, чем подчеркнул сходство между Ниобием и танталом. Позднее было установлено, что Ниобий тот же элемент, что и Колумбий.

Распространение Ниобия в природе. Среднее содержание Ниобий в земной коре (кларк) 2·10 -3 % по массе. Только в щелочных изверженных породах - нифелиновых сиенитах и других, содержание Ниобия повышено до 10 -2 - 10 -1 %. В этих породах и связанных с ними пегматитах, карбонатитах, а также в гранитных пегматитах обнаружено 23 минерала Ниобий и около 130 других минералов, содержащих повышенные количества Ниобия. Это в основном сложные и простые оксиды. В минералах Nb связан с редкоземельными элементами и с Та, Ti, Ca, Na, Th, Fe, Ba (тантало-ниобаты, титанаты и других). Из 6 промышленных минералов наиболее важны пирохлор и колумбит. Промышленные месторождения Ниобия связаны с массивами щелочных пород (например, на Кольском полуострове), их корами выветривания, а также с гранитными пегматитами. Важное значение имеют и россыпи танталониобатов.

В биосфере геохимия Ниобий изучена плохо. Установлено, что в районах щелочных пород, обогащенных Ниобием, он мигрирует в виде соединений с органическими и другими комплексами. Известны минералы Ниобия, образующиеся при выветривании щелочных пород (мурманит, герасимовскит и других). В морской воде лишь около 1·10 -9 % Ниобия по массе.

Физические свойства Ниобия. Кристаллическая решетка Ниобия объемноцентрированная кубическая с параметром а = 3,294Å. Плотность 8,57 г/см 3 (20 °С); t пл 2500 °С; t кип 4927 °С; давление пара (в мм рт. ст.; 1 мм рт. ст.= 133,3 н/м 2) 1·10 -5 (2194 °С), 1·10 -4 (2355 °С), 6·10 -4 (при t пл), 1·10 -3 (2539 °С). Теплопроводность в вт/(м·К) при 0°С и 600 °С соответственно 51,4 и 56,2, то же в кал/(см·сек·°С) 0,125 и 0,156. Удельное объемное электрическое сопротивление при 0°С 15,22·10 -8 ом·м (15,22·10 -6 ом·см). Температура перехода в сверхпроводящее состояние 9,25 К. Ниобий парамагнитен. Работа выхода электронов 4,01 эв.

Чистый Ниобий легко обрабатывается давлением на холоду и сохраняет удовлетворительные механические свойства при высоких температурах. Его предел прочности при 20 и 800 °С соответственно равен 342 и 312 Мн/м 2 , то же в кгс/мм 2 34,2 и 31,2; относительное удлинение при 20 и 800 °С соответственно 19,2 и 20,7%. Твердость чистого Ниобиы по Бринеллю 450, технического 750-1800 Mн/м 2 . Примеси некоторых элементов, особенно водорода, азота, углерода и кислорода, сильно ухудшают пластичность и повышают твердость Ниобия.

Химические свойства Ниобия. По химические свойствам Ниобий близок к танталу. Оба они чрезвычайно устойчивы (тантал более чем Ниобий) на холоду и при небольшом нагревании к действию многих агрессивных сред. Компактный Ниобий заметно окисляется на воздухе только выше 200 °С. На Ниобий действуют: хлор выше 200 °С, водород при 250 °С (интенсивно при 360 °С), азот при 400 °С. Практически не действуют на Ниобий очищенные от примеси кислорода жидкие Na, К и их сплавы, Li, Bi, Pb, Hg, Sn, применяемые в качестве жидкометаллических теплоносителей в атомных реакторах.

Ниобий устойчив к действию многих кислот и растворов солей. На него не действуют царская водка, соляная и серная кислоты при 20 °С, азотная, фосфорная, хлорная кислоты, водные растворы аммиака. Плавиковая кислота, ее смесь с азотной кислотой и щелочи растворяют Ниобий. В кислых электролитах на Ниобии образуется анодная оксидая пленка с высокими диэлектрическими характеристиками, что позволяет использовать Ниобий и его сплавы с Та взамен дефицитного чистого Та для изготовления миниатюрных электролитических конденсаторов большой емкости с малыми токами утечки.

Конфигурация внешних электронов атома Nb 4d 4 5s l . Наиболее устойчивы соединения пятивалентного Ниобия, но известны и соединения со степенями окисления + 4, +3, +2 и +1, к образованию которых Ниобий склонен более, чем тантал. Например, в системе Ниобий-кислород установлены фазы: оксид Nb 2 O 5 (t пл 1512 °С, цвет белый), нестехеометрические NbO 2,47 и NbO 2,42, оксид NbO 2 (t пл 2080 °С, цвет черный), оксид NbO (t пл 1935 °С, цвет серый) и твердый раствор кислорода в Ниобии. NbO 2 - полупроводник; NbO, сплавленная в слиток, обладает металлическим блеском и электропроводностью металлического типа, заметно испаряется при 1700 °С, интенсивно - при 2300-2350 °С, что используют для вакуумной очистки Ниобия от кислорода; Nb 2 O 5 имеет кислотный характер; ниобиевые кислоты не выделены в виде определенных химические соединений, но известны их соли - ниобаты.

С водородом Nb образует твердый раствор внедрения (до 10 ат.% Н) и гидрид состава от NbH 0,7 до NbH. Растворимость водорода в Nb (в г/см 3) при 20 °С 104, при 500°С 74,4, при 900°С 4,0. Поглощение водорода обратимо: при нагревании, особенно в вакууме, водород выделяется; это используют для очистки Nb от водорода (сообщающего металлу хрупкость) и для гидрирования компактного Nb: хрупкий гидрид измельчают и дегидрируют в вакууме, получая чистый порошок Ниобий для электролитических конденсаторов. Растворимость азота в Ниобии составляет (% по массе) 0,005, 0,04 и 0,07 соответственно при 300, 1000 и 1500 °С. Рафинируют Ниобий от азота нагреванием в глубоком вакууме выше 1900 °С или вакуумной плавкой. Высший нитрид NbN светло-серого цвета с желтоватым оттенком; температура перехода в сверхпроводящее состояние 15,6 К. С углеродом при 1800-2000°С Nb образует 3 фазы: α-фаза - твердый раствор внедрения углерода в Ниобий, содержащий до 2 ат.% С при 2335 °С; β-фаза - Nb 2 C, δ-фаза - NbC. С галогенами Ниобий дает галогениды, оксигалогениды и комплексные соли. Из них наиболее важны пентафторид NbF 5 , пентахлорид NbCl 5 , окситрихлорид NbOCl 3 , фторониобат калия K 2 NbF 7 и оксифторониобат калия K 2 NbOF 7 ·Н 2 О. Небольшое различие в давлении паров NbCl 5 и ТаСl 5 используют для их весьма полного разделения и очистки методом ректификации.

Получение Ниобия. Руды Nb - обычно комплексные и бедны Nb, хотя их запасы намного превосходят запасы руд Та. Рудные концентраты содержат Nb 2 O 5: пирохлоровые - не менее 37%, лопаритовые - 8%, колумбитовые - 30-60%. Большую их часть перерабатывают алюмино- или силикотермическим восстановлением на феррониобий (40-60% Nb) и ферротанталониобий. Металлич. Nb получают из рудных концентратов по сложной технологии в три стадии: 1) вскрытие концентрата, 2) разделение Nb и Та и получение их чистых химические соединений, 3) восстановление и рафинирование металлического Ниобия и его сплавов. Основные промышленные методы производства Nb и сплавов - алюминотермический, натриетермический, карботермический: из смеси Nb 2 O 5 и сажи вначале получают при 1800 °С в атмосфере водорода карбид, затем из смеси карбида и оксид (V) при 1800-1900 °С в вакууме - металл; для получения сплавов Ниобия в эту смесь добавляют оксиды легирующих металлов; по другому варианту Ниобий восстанавливают при высокой температуре в вакууме непосредственно из Nb 2 O 5 сажей. Натриетермическим способом Ниобий восстанавливают натрием из K 2 NbF 7 , алюминотермическим - алюминием из Nb 2 O 5 . Компактный металл (сплав) производят методами порошковой металлургии, спекая спрессованные из порошков штабики в вакууме при 2300 °С, либо электроннолучевой и вакуумной дуговой плавкой; монокристаллы Nb высокой чистоты - бестигельной электроннолучевой зонной плавкой.

Применение Ниобия. Применение и производство Ниобия быстро возрастают, что обусловлено сочетанием таких его свойств, как тугоплавкость, малое сечение захвата тепловых нейтронов (1,15 б), способность образовывать жаропрочные, сверхпроводящие и других сплавы, коррозионная стойкость, геттерные свойства, низкая работа выхода электронов, хорошие обрабатываемость давлением на холоду и свариваемость. Основные области применения Ниобия: ракетостроение, авиационная и космическая техника, радиотехника, электроника, химическое аппаратостроение, атомная энергетика. Из чистого Ниобия или его сплавов изготовляют детали летательных аппаратов; оболочки для урановых и плутониевых тепловыделяющих элементов; контейнеры и трубы для жидких металлов; детали электрических конденсаторов; "горячую" арматуру электронных (для радарных установок) и мощных генераторных ламп (аноды, катоды, сетки и другие); коррозионноустойчивую аппаратуру в химической промышленности. Ниобием легируют другие цветные металлы, в т. ч. уран. Ниобий применяют в криотронах - сверхпроводящих элементах вычислительных машин, а станнид Nb 3 Sn и сплавы Nb с Ti и Zr - для изготовления сверхпроводящих соленоидов. Nb и сплавы с Та во многих случаях заменяют Та, что дает большой экономический эффект (Nb дешевле и почти вдвое легче, чем Та). Феррониобий вводят в нержавеющие хромоникелевые стали для предотвращения их межкристаллитной коррозии и разрушения и в стали других типов для улучшения их свойств. Применяют и соединения Ниобия: Nb 2 O 5 (катализатор в химической промышленности; в производстве огнеупоров, керметов, специальных стекол), нитрид, карбид, ниобаты.

В др.-греч. мифологии * а. niobium; н. Niob, Niobium; ф. niobium; и. niobio), — химический элемент V группы периодической системы Менделеева , атомный номер 41, атомная масса 92,9064. Имеет один природный изотоп 93 Nb.

Оксид ниобия выделен впервые английским химиком Ч. Хатчетом в 1801 из колумбита . Металлический ниобий получил в 1866 шведский учёный К. В. Бломстранд.

Ниобий свойства

Ниобий- металл стального цвета, имеет объёмно-центрированную кубического решётку с а=0,3294 нм; плотность 8570 кг/м 3 ; t плавления2500°С, t кипения4927°С; теплоёмкость (298 К) 24,6 Дж/(моль.К); теплопроводность (273 К) 51,4 Вт/(м.К); температурный коэффициент линейного расширения (63-1103 К) 7,9.10 -6 К -1 ; удельное электрическое сопротивление (293 К) 16.10 -8 Ом.м; термический коэффициент электрического сопротивления (273 К) 3,95.10 -3 К -1 . Температура перехода в сверхпроводящее состояние 9,46 К.

Степень окисления +5, реже от +1 до +4. По химическим свойствам близок к танталу, чрезвычайно устойчив к холоду и при небольшом нагревании к действию многих агрессивных сред, в т.ч. и кислот. Ниобий растворяет только плавиковая кислота, её смесь с азотной кислотой и щёлочи. Амфотерен. При взаимодействии с галогенами образует галогениды ниобия. При сплавлении Nb 2 О 5 с содой получают соли ниобиевых кислот — ниобаты, хотя сами кислоты не существуют в свободном состоянии. Ниобий может образовывать двойные соли и комплексные соединения. Нетоксичен.

Получение и применение

Для получения ниобия ниобиевый концентрат сплавляют с едким натром или содой и образующийся сплав выщелачивают. Содержащиеся в нерастворившемся осадке Nb и Ta разделяют, оксид ниобия восстанавливают отдельно от оксида тантала. Компактный ниобий получают методами порошковой металлургии, электродуговой, вакуумной и электроннолучевой плавки.

Ниобий — один из основных компонентов при легировании жаропрочных сталей и сплавов. Ниобий и его сплавы используются как конструкционные материалы для деталей реактивных двигателей, ракет, газовых турбин, химической аппаратуры, электронных приборов, электрических конденсаторов, сверхпроводящих устройств. Ниобаты широко применяют как сегнетоэлектрики, пьезоэлектрики, лазерные материалы.

Производство ниобия наряду с танталом, а также танталониобиевых сплавов имеет важное экономическое значение с точки зрения комплексного использования обоих ценных металлов.
Во многих случаях вместо тантала с тем же эффектом можно использовать близкий к нему по свойствам ниобий или сплавы тантала с ниобием, поскольку эти металлы образуют непрерывный ряд твердых растворов, свойства которых близки к свойствам исходных металлов.
Сплав тантала с ниобием можно получить путем смешения раздельно полученных порошков тантала и ниобия с последующим прессованием смеси и спеканием в вакууме, а также путем одновременного совместного восстановления смеси соединений тантала и ниобия, например смеси комплексных фторидов K2TaF7 и K2NbF7, смеси хлоридов, смеси окислов и т. п.
Обычно при плавиковокислом методе разделения тантала и ниобия последний отделяется в форме фтороксиниобата K2NbOF5*H2O.
Эта соль не пригодна для восстановления ее натрием по двум причинам:
а) кристаллизационная вода, входящая в состав указанной соли, реагируя с натрием, может привести к взрыву,
б) кислород, входящий в состав соли и связанный с ниобием, не восстанавливается натрием и остается в форме примеси окисла в продукте восстановления.
Поэтому фтороксиниобат калия должен быть перекристаллизован через раствор плавиковой кислоты с концентрацией HF выше 10%, в результате чего образуется соль K2NbF7, пригодная для восстановления натрием.
Ниобий также может быть получен электролизом в условиях, аналогичных описанным для производства тантала. Отмечаются более низкий выход по току, чем при электролитическом получении тантала, а также затруднения, связанные с заметной растворимостью в электролите соединений ниобия разных валентностей.
Возможен и электролиз из смешанной ванны, содержащей в качестве разлагающихся составляющих смесь Ta2O5+Nb2O5 и в качестве растворителя K2TaF7. В этом случае получается сплав ниобия с танталом.
Для получения ниобия был предложен метод углеродного восстановления пятиокиси ниобия в вакууме.

Восстановление пятиокиси ниобия углеродом


Для получения ниобия К. Болке разработал метод восстановления пятиокиси ниобия карбидом ниобия в вакууме по реакции:

По существу этот процесс сводится к восстановлению пятиокиси ниобия углеродом.
Ввиду большой химической прочности пятиокиси ниобия для восстановления углеродом при атмосферном давлении требуется высокая температура (около 1800-1900°), которая может быть получена в графитовотрубчатой печи Ниобий обладает большим сродством к углероду (свободная энергия образования карбида ниобия -ΔF° =38,2 ккал), поэтому при наличии углеродистых газов в печи и при большой скорости диффузии в твердой фазе, развивающейся при такой высокой температуре, ниобий оказывается загрязненным карбидом ниобия, даже в случае составления шихты в расчете на реакцию

В вакууме реакция восстановления углеродом протекает при более низкой температуре (1600-1700°),
Брикеты приготовляют из смеси пятиокиси ниобия и сажи, взятых в стехиометрических соотношениях по расчету на реакцию

Прокативание проводят при 1800-1900° в графитовотрубчатой печи в защитной атмосфере (водород, аргон) или в вакууме при температуре 1600° до прекращения выделения CO. Получающийся продукт представляет собой слегка спекшиеся брикеты, состоящие из частиц порошкообразного карбида серого цвета. Карбид измельчают в порошок в шаровой мельнице и смешивают с пятиокисью в соотношениях, соответствующих реакции (1). Брикеты смеси Nb2O5 + NbC вновь прокаливают в вакууме при температуре около 1600°.
Для обеспечения потного удаления углерода в виде CO в состав шихты Nb2O5 + NbC следует вводить небольшой избыток пятиокиси ниобия. В последующей операции высокотемпературного спекания (сварки) штабиков, спрессованных из порошкообразного металлического ниобия, избыток пятиокиси ниобия удаляется, так как.окислы ниобия (как и тантала) улетучиваются в вакууме при температуре ниже точки плавления металла
Вследствие неизбежных затрат времени на создание вакуума и остывания в нем продукта производительность вакуумной печи при изготовлении исходного карбида ниобия намного ниже производительности графитовотрубчатой печи, работающей при атмосферном давлении, в которой можно осуществлять непрерывный процесс продвижкой патронов с брикетами смеси Nb2O5 + С. Поэтому целесообразнее получать NbC непрерывным путем в графитовотрубчатой печи при атмосферном давлении хотя и при температурах 1800-1900°.
Можно было бы получать металлический ниобий в вакуумной печи непосредственно путем взаимодействия пятиокиси с сажей по реакции (2) с небольшим избытком Nb2O5 в шихте. Однако при загрузке в вакуумную печь смеси Nb2O5 + 5NbC ее производительность существенно повышается по сравнению с загрузкой смеси Nb2O5 + 5С, так как смесь Nb2O5 + SNbC содержит ниобия (82,4%) в 1,5 раза больше, чем смесь Nb2O5 + 5С (57,2%) Кроме того, первая смесь имеет аддитивный удельный вес в 1,7 раза больший, чем вторая смесь (6,25 г/см3 и 3,7 г/см3 соответственно).
Помимо этого, надо учитывать, что карбид ниобия, составляющий преобладающую часть смеси Nb2O5 + 5NbC, более крупнозернист чем дисперсные порошки Nb2O5 и сажи, что служит дополнительной причиной большего насыпного веса смеси Nb2O5 + 5NbC, чем смеси Nb2O5 + 5С.
Вследствие всего этого в единицу объема патрона может вместиться в 2,5-3 раза больше материала (в расчете на содержание ниобия) в форме брикетов смеси Nb2О5 + 5NbC, чем брикетов смеси Nb2O5 + 5С.
В работе Болке нет достаточно веских доказательств необходимости строго придерживаться рекомендуемого им состава Nb2O5 + 5NbC смеси, загружаемой в вакуумную печь.
Путем прокаливания смеси Nb2O5 + 5С в угольнотрубчатой печи при атмосферном давлении можно получить с большой производительностью (при непрерывном процессе) продукт, близкий по составу к металлическому ниобию с небольшой примесью углерода. Затем этот богатый ниобием порошок с высоким удельным и насыпным весом можно смешать с соответствующим количеством Nb2O5 (с небольшим избытком Nb2O5 по отношению к эквиваленту содержания примеси углерода в ниобии) и сбрикетированную смесь прокалить в вакуумной печи для удаления углерода в форме CO.
При таком варианте вместимость, а следовательно, и производительность вакуумной печи будет наибольшей. Небольшой остающийся избыток Nb2O5 улетучится в процессе дальнейшего высокотемпературного спекания ниобия, и последний превратится в компактный ковкий металл
При использовании малоуглеродистого ниобия вместо карбида ниобия для взаимодействия с пятиокисью могут возникнуть некоторые технологические осложнения. Дело в том, что при получении малоуглеродистого ниобия при атмосферном давлении в реакционном пространстве графитовотрубчатой печи всегда возможно присутствие примеси азота из воздуха могущего попасть в печь. Ниобий, обладая высоким сродством к азоту, активно поглощает его. При получении же карбида ниобия возможность загрязнения продукта азотом гораздо меньше вследствие большего сродства ниобия к углероду, чем к азоту.
Поэтому получение металлического ниобия при использовании в качестве исходного материала малоуглеродистого ниобия осложняется необходимостью создания условий, исключающих возможность попадания азота в реакционное пространство, что трудно достижимо в графитовотрубчатой печи, свободно соединенной с атмосферой. Для удаления азота из печи требуется тщательно заполнять печь чистым водородом или аргоном, соблюдать герметичность кожуха, избегать засасывания воздуха в реакционную трубу при загрузке в нее патронов со смесью Nb2O5 + 5С и при выгрузке ниобия и т. д.
Поэтому вопрос о преимуществах варианта предварительного получения карбида ниобия или малоуглеродистого ниобия при атмосферном давлении (с последующим прокаливанием этих продуктов в смеси с Nb2O5 в вакууме) может быть решен практическими возможностями в каждом отдельном случае.
Преимуществами процесса углеродного восстановления ниобия по одному из описанных вариантов являются: использование дешевого восстановителя в виде сажи и высокое прямое извлечение ниобия в готовый металл
Близость свойств окислов тантала и ниобия позволяет использовать описанный метод и для получения ковкого тантала.

15.08.2019

Арматура – строительный металлопрокат, профиль которого может быть гладким (класс А1) или периодическим. Арматура применяется для усиления и повышения прочности...

15.08.2019

Открыт метод плазменной резки был относительно недавно, однако в промышленности он используется весьма активно, так как изучен хорошо....

15.08.2019

Развитие технологий позволяет совершенствовать пневмоинструменты. Для их питания используется сжатый воздух. Такой инструмент активно используют в промышленности, на...

15.08.2019

Начало учебного года – это серьезное испытание для малыша, так как ломается его привычный уклад жизни. Родители должны помочь ему пережить эту перемену. Очень важную...

14.08.2019

Арматура – комплекс элементов, придающих дополнительную прочность в различных железобетонных конструкциях. Используется она обычно с бетоном. Внутри материала она...

14.08.2019

Все водители могут столкнуться во время путешествия с непредвиденными ситуациями. Можно попасть в дорожно-транспортное происшествие, системы и узлы авто могут неожиданно...

14.08.2019

Профлист – металлический гофрированный жесткий лист, имеющий цинковое или полимерное покрытие. Этот вариант кровельного материала весьма распространен и востребован....

Ниобий

НИО́БИЙ -я; м. [лат. Niobium] Химический элемент (Nb), твёрдый тугоплавкий и ковкий металл серовато-белого цвета (используется при производстве химически стойких и жаростойких сталей).

Нио́бийный; нио́биевый, -ая, -ое.

нио́бий

(лат. Niobium), химический элемент V группы периодической системы. Назван по имени Ниобы - дочери мифологического Тантала (близость свойств Nb и Ta). Светло-серый тугоплавкий металл, плотность 8,57 г/см 3 , t пл 2477°C, температура перехода в сверхпроводящее состояние 9,28 K. Химически очень стоек. Минералы: пирохлор, колумбит, лопарит и др. Компонент химически стойких и жаростойких сталей, из которых изготовляют детали ракет, реактивных двигателей, химическую и нефтеперегонную аппаратуру. Ниобием и его сплавами покрывают тепловыделяющие элементы (ТВЭЛы) ядерных реакторов. Станнид Nb 3 Sn, германид Nb 3 Ge, сплавы ниобия с Sn, Ti и Zr используют для изготовления сверхпроводящих соленоидов (Nb 3 Ge - сверхпроводник с температурой перехода в сверхпроводящее состояние 23,2 K).

НИОБИЙ

НИО́БИЙ (лат. Niobium, от имени Ниобы (см. НИОБА) ), Nb (читается «ниобий»), химический элемент с атомным номером 41, атомная масса 92,9064. Природный ниобий состоит из одного стабильного изотопа 93 Nb. Конфигурация двух внешних электронных слоев 4s 2 p 6 d 4 5s 1 . Cтепени окисления +5, +4, +3, +2 и +1 (валентности V IV, III, II и I). Расположен в группе VВ, в 5 периоде периодической системы элементов.
Радиус атома 0,145 нм, радиус иона Nb 5+ - от 0,062 нм (координационное число 4) до 0,088 нм (8), иона Nb 4+ - от 0,082 до 0,092 нм, иона Nb 3+ - 0,086 нм, иона Nb 2+ - 0,085 нм. Энергии последовательной ионизации - 6,88, 14,32, 25,05, 38,3 и 50,6 эВ. Работа выхода электронов 4,01 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 1,6.
История открытия
Открыт в 1801 Ч. Хатчетом (см. ХАТЧЕТ Чарлз) . Исследуя черный минерал, присланный из Америки, он выделил оксид нового элемента, который он назвал колумбием, а содержащий его минерал - колумбитом. Через год из того же минерала А. Г. Экеберг (см. ЭКЕБЕРГ Андерс Густав) выделил еще один оксид, который назвал танталом (см. ТАНТАЛ (химический элемент)) . Свойства колумбия и Ta были очень близки, и их очень долго рассматривали как один элемент. В 1844 Г. Розе (см. РОЗЕ (немецкие ученые, братья)) доказал, что это два разных элемента. Он сохранил название тантал, а другой назвал ниобий. Только в 1950 ИЮПАК (Всемирная организация химиков) окончательно присвоила элементу №41 название ниобий. Металлический Nb первым получил в 1866 К. Бломстранд (см. БЛОМСТРАНД Кристиан Вильгельм) .
Нахождение в природе
Содержание в земной коре 2·10 -3 % по массе. В свободном виде ниобий не встречается, в природе сопутствует танталу. Из руд наиболее важны колумбит-танталит (см. КОЛУМБИТ) (Fe,Mn)(Nb,Ta) 2 O 6 , пирохлор (см. ПИРОХЛОР) и лопарит (см. ЛОПАРИТ) .
Получение
Около 95% Nb получают из пирохлоровых, колумбит-танталитовых и лопаритовых руд. Руды обогащают гравитационнымми методами и флотацией (см. ФЛОТАЦИЯ) . Концентраты с содержанием Nb 2 O 5 до 60% перерабатывают до феррониобия (сплава железа и ниобия), чистого Nb 2 O 5 или NbCl 5 . Восстанавливают ниобий из его оксида, фторида или хлорида алюмино- или карботермией. Особо чистый ниобий получают высокотемпературным восстановлением летучего NbCl 5 водородом.
Полученный порошок ниобия брикетируют, спекают в вакууме в электродуговых или электроннолучевых печах.
Физические и химические свойства
Ниобий - блестящий серебристо-серый металл с кубической объемно центрированной кристаллической решеткой типа a-Fe, а = 0,3294 нм. Температура плавления 2477°C, кипения 4760°C, плотность 8,57 кг/дм 3 .
Химически ниобий довольно устойчив. При прокаливании на воздухе окисляется до Nb 2 О 5 . Для этого оксида описано около 10 кристаллических модификаций. При обычном давлении стабильна b-форма Nb 2 О 5 . При сплавлении Nb 2 О 5 с различными оксидами получают ниобаты: Ti 2 Nb 10 О 29 , FeNb 49 О 124 . Ниобаты могут рассматриваться как соли гипотетических ниобиевых кислот. Они делятся на метаниобаты MNbO 3 , ортониобаты M 3 NbO 4 , пирониобаты M 4 Nb 2 O 7 или полиниобаты M 2 O·n Nb 2 O 5 (M - однозарядный катион, а n = 2-12). Известны ниобаты двух- и трехзарядных катионов. Ниобаты реагируют с HF, расплавами гидрофторидов щелочных металлов (KHF 2) и аммония (см. АММОНИЙ (в химии)) . Некоторые ниобаты с высоким отношением M 2 O/Nb 2 O 5 гидролизуются:
6Na 3 NbO 4 + 5H 2 O = Na 8 Nb 6 O 19 + 10NaOH
Ниобий образует NbО 2 , NbО и ряд оксидов, промежуточных между NbО 2,42 и NbО 2,50 и близких по структуре к b-форме Nb 2 О 5 .
С галогенами (см. ГАЛОГЕНЫ) Nb образует пентагалогениды NbHal 5 , тетрагалогениды NbHal 4 и фазы NbHal 2,67 -NbHal 3+x , в которых имеются группировки Nb 3 или Nb 2 . Пентагалогениды ниобия легко гидролизуются водой. Температуры плавления пентахлорида, пентабромида и пентаиодида ниобия - 205, 267,5 и 310°C. Выше 200-250°C эти пентагалогениды летучи.
В присутствии паров воды и кислорода NbCl 5 и NbBr 5 образуют оксигалогениды NbOCl 3 (NbOBr 3) - рыхлые ватообразные вещества.
При взаимодействии Nb и графита образуются карбиды Nb 2 C и NbC, твердые жаропрочные соединения. В системе Nb - N существуют несколько фаз переменного состава и нитриды Nb 2 N и NbN. Сходным образом ведет себя Nb в системах с фосфором и мышьяком. При взаимодействии Nb с серой получены сульфиды: NbS, NbS 2 и NbS 3 . Синтезированы двойные фториды Nb и K (Na) - K 2 .
Применение
50% производимого ниобия используется для микролегирования сталей, 20-30% - для получения нержавеющих и жаропрочных сплавов. Интерметаллиды ниобия (Nb 3 Sn и Nb 3 Ge) применяют при изготовлении соленоидов сверхпроводящих устройств. Нитрид ниобия NbN используют при изготовлении мишеней передающих телевизионных трубок. Оксиды ниобия - компоненты огнеупорных материалов, керметов, стекол с высокими коэффициентами преломления. Двойные фториды - при выделении ниобия из природного сырья, при производстве металлического ниобия. Ниобаты используются в акусто- и оптоэлектронике, как лазерные материалы.
Физиологическое действие
Соединения ниобия ядовиты. ПДК ниобия в воде 0,01 мг/л.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "ниобий" в других словарях:

    - (ново лат. niobium). Один из редких металлов, встречающийся в танталите. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. НИОБИЙ металл, встречается в виде окислов в редких минералах практического значения не имеет … Словарь иностранных слов русского языка

    - (Niobium), Nb, химический элемент V группы периодической системы, атомный номер 41, атомная масса 92,9064; металл, tпл 2477 шC. Ниобий используют для легирования сталей, получения жаропрочных, твердых и других сплавов. Ниобий открыт английским… … Современная энциклопедия

    Ниобий - (Niobium), Nb, химический элемент V группы периодической системы, атомный номер 41, атомная масса 92,9064; металл, tпл 2477 °C. Ниобий используют для легирования сталей, получения жаропрочных, твердых и других сплавов. Ниобий открыт английским… … Иллюстрированный энциклопедический словарь

    - (символ Nb), блестящий серо белый переходный химический элемент, металл. Открыт в 1801 г. Встречается, как правило, в пирохлорных рудах. Будучи мягким и ковким металлом, ниобий применяется в производстве специальных нержавеющий сталей и сплавов… … Научно-технический энциклопедический словарь

    Nb (лат. Niobium; от им. Ниобы дочери Тантала в др. греч. мифологии * a. niobium; н. Niob, Niobium; ф. niobium; и. niobio), хим. элемент V группы периодич. системы Менделеева, ат. н. 41, ат. м. 92,9064. Имеет один природный изотоп 93Nb.… … Геологическая энциклопедия

    НИОБИЙ, один из открытых химиками металлов. Толковый словарь Даля. В.И. Даль. 1863 1866 … Толковый словарь Даля

    НИОБИЙ - хим. элемент, символ Nb (лат. Niobium), ат. н. 41, ат. м. 92,90; светло серый металл, плотность 8570 кг/м3, t = 2500 °С; обладает высокой хим. стойкостью. В природе встречается в минералах совместно с танталом, разделение с которым вызывает… … Большая политехническая энциклопедия

    - (лат. Niobium) Nb, химический элемент V группы периодической системы, атомный номер 41, атомная масса 92,9064. Назван от имени Ниобы дочери мифологического Тантала (близость свойств Nb и Ta). Светло серый тугоплавкий металл, плотность 8,57… … Большой Энциклопедический словарь

    - (Niobium), Nb, хим … Физическая энциклопедия

    Сущ., кол во синонимов: 2 металл (86) элемент (159) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    - (Niobium франц. и англ., Niob нем.; хим.), Nb =:94. в Vгруппе периодической системы элементов имеются два редких металла, Н. итантал, которые относятся к ванадию подобно тому, как молибден ивольфрам к хрому; последние три металла члены… … Энциклопедия Брокгауза и Ефрона