Коллайдер для чего он. Большой адронный коллайдер: для чего нужен, где находится

Определение большого адронного коллайдера звучит так: БАК является ускорителем заряженных частиц, и создан он с целью разгона тяжелых ионов и протонов свинца, и исследования тех процессов, которые происходят при их столкновении. Но зачем это нужно? Таит ли в себе это какую-то опасность? В этой статье мы и будем отвечать на эти вопросы, и попробуем понять, зачем нужен большой адронный коллайдер.

Что собой представляет БАК

Большой адронный коллайдер – это огромнейший тоннель кольцеобразной формы. Он похож на большую трубу, которая разгоняет частицы. Находится БАК под территорией Швейцарии и Франции, на глубине 100 метров. Ученые всего мира принимали участие в его создании.

Цель его постройки:

  • Найти бозон Хиггса. Это механизм, который наделяет частицы массой.
  • Изучение кварков – это фундаментальные частицы, которые входят в состав адронов. Поэтому и название коллайдера «адронный».

Многие думают, что БАК является единственным ускорителем в мире. Но это далеко не так. Начиная с 50-х годов 20 века в мире построен не один десяток подобных коллайдеров. Но большой адронный коллайдер считается самым масштабным сооружением, длина его составляет 25,5 км. Кроме этого, в него входит еще один ускоритель, меньший по размеру.

СМИ о БАК

В СМИ, еще с начала создания коллайдера, появилось огромное количество статей об опасности и дороговизне ускорителя. Основная масса людей считает, что деньги потрачены зря, они не могут понять, зачем тратить столько средств и сил на поиски какой-то частицы.

  • Большой адронный коллайдер не является самым дорогим научным проектом в истории.
  • Основная цель этой работы - бозон Хиггса, для открытия которого и созданадронный коллайдер. Результаты этого открытия принесут человечеству множество революционных технологий. Ведь изобретение сотового телефона тоже когда-то было встречено негативно.

Принцип работы БАК

Рассмотрим, как выглядит работа адронного коллайдера. Он на больших скоростях сталкивает пучки частиц, а затем следит за их последующим взаимодействием и поведением. Как правило, на вспомогательном кольце сначала разгоняется один пучок частиц, а уже после этого он отправляется в кольцо основное.

Внутри коллайдера частицы удерживают множество сильнейших магнитов. Так как столкновение частиц происходит за доли секунды, то их перемещение фиксируют высокоточные приборы.

Организацией, которая осуществляет работу коллайдера, является ЦЕРН. Именно она, 4 июля 2012 года, после огромных денежных вложений и трудов, официально объявила о том, что бозон Хиггса таки найден.

Зачем БАК нужен

Теперь необходимо понять, что же дает БАК обычным людям, зачем адронный коллайдер нужен.

Открытия, связанные с бозоном Хиггса и изучение кварков, могут привести в перспективе к новой волне научно-технического прогресса.

  • Грубо говоря, масса является энергией в состоянии покоя, а значит, в будущем есть возможность преобразовать материю в энергию. И, следовательно, не будет проблем с энергией и появится возможность межзвездных путешествий.
  • В будущем изучение квантовой гравитации позволит управлять гравитацией.
  • Это дает возможность подробнее изучить М-теорию, которая утверждает, что в мироздание входит 11 измерений. Это изучение позволит глубже понять строение Вселенной.

О надуманной опасности адронного коллайдера

Как правило, люди боятся всего нового. Опасения у них вызывает и адронный коллайдер. Опасность же его надумана и разжигается в СМИ людьми, не имеющими естественно-научного образования.

  • В БАК сталкиваются адроны, а не бозоны, как пишут некоторые журналисты, пугая людей.
  • Подобные приборы работают уже много десятилетий и приносят не вред, а пользу науке.
  • Предположение о столкновении протонов с высокими энергиями, в результате которых могут возникнуть черные дыры, опровергается квантовой теорией гравитации.
  • В черную дыру может коллапсировать только звезда в 3 раза тяжелее солнца. Так как в солнечной системе таких масс нет, то и черной дыре неоткуда возникнуть.
  • Из-за той глубины, на которой находится коллайдер под землей, его излучение не представляет опасности.

Мы узнали, что такое БАК и для чего нужен адронный коллайдер и поняли, что опасаться его не стоит, а лучше ждать открытий, которые сулят нам большой технический прогресс.

Большой адронный коллайдер (Large Hardon Collider, LHC) — это типичный (хотя и сверхмощный) ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжелых ионов (ионов свинца) и изучения продуктов их соударений. БАК — это микроскоп, с помощью которого физики будут разгадывать, из чего и как сделана материя, получая сведения об её устройстве на новом, еще более микроскопическом уровне.

Многие ждали с нетерпением, а что же будет после его запуска, но нечего в принципе и не произошло — наш мир сильно скучен, чтобы случилось что-то действительно интересное и грандиозное. Вот она цивилизация и её венец творения человек, как раз получилась некая коалиция цивилизации и людей, сплотившись вместе уже на протяжении века, в геометрической прогрессии загаживаем землю, и бесчинно разрушаем всё то, то накапливалось миллионы лет. Об этом мы поговорим в другом сообщении, и так – вот он АДРОННЫЙ КОЛЛАЙДЕР .

Вопреки многочисленным и разносторонним ожиданиям, народов и СМИ всё прошло тихо и мирно. О, как же было всё раздуто, например газеты твердили от номера к номеру: «БАК = конец света!», «Путь к катастрофе или открытиям?», «Аннигиляционная Катастрофа», чуть ли не конец света пророчили и гигантскую черную дыру, в которую засосет всю землю. Видимо эти теории выдвигали завистливые физики, у которых в школе не получилось получить аттестат об окончании с цифрой 5, по этому предмету.

Вот, например был такой философ Демокрит, который в своей древней Греции (кстати, современные школьники пишут это одним словом, т.к. воспринимают это несуществующей странной , наподобие СССР, Чехословакии, Австро-Венгрия, Саксония, Курляндия и т.д. – «Древняягреция») он высказал некую теорию, что вещество состоит из неделимых частиц – атомов , но доказательство этому, ученые нашли только приблизительно через 2350 лет. Атом (неделимый) – разделить тоже можно, это обнаружили ещё спустя 50 лет, на электроны и ядра, а ядро – на протоны и нейтроны. Но и они, как выяснилось, не самые мелкие частицы и в свою очередь состоят из кварков. На сегодняшний день физики считают, что кварки – предел деления материи и ничего меньше не существует. Известно шесть типов кварков: верхний, странный, очарованный, прелестный, истинный, нижний – а соединяются они с помощью глюонов.

Слово «коллайдер» происходит от английского collide – сталкиваться. В коллайдере два пуска частиц летят навстречу друг другу и при столкновении энергии пучков складываются. Тогда как в обычных ускорителях, которые строятся и работают вот уже несколько десятилетий (первые их модели относительно умеренных размеров и мощности, появились ещё перед второй мировой войной в 30-х годах), пучек ударяет по неподвижной мишени и энергии такого соударения гораздо меньше.

«Адронным» коллайдер назван, потому что предназначается для разгона адронов. Адроны – это семейство элементарных частиц, к которым относятся протоны и нейтроны, из них состоят ядра всех атомов, а также разнообразные мезоны. Важное свойство адронов – то, что они не являются по-настоящему элементарными частицами, а состоят из кварков, «склееных» глюонами.

Большим коллайдер стал из-за своих размеров – это крупнейшая физическая экспериментальная установка из всех когда-либо существующих в мире, только основное кольцо ускорителя тянется более, чем на 26 км.

Предполагается, что скорость разогнанных БАКом протонов составит 0,9999999998 от скорости света, а количество столкновений частиц, происходящих в ускорителе каждую секунду, достигнет 800 млн. Суммарная энергия сталкивающихся протонов составит 14 ТэВ (14 тераэлектро-вольта, а ядер свинца – 5,5ГэВ на каждую пару сталкивающихся нуклонов. Нуклоны (от лат. nucleus - ядро) - общее название для протонов и нейтронов.

Существуют разные мнения по поводу техники создания ускорителей на сегодняшний день: одни уверяют, что она подошла к своему логическому приделу, другие же что предела совершенству нет – и различными обзорами приводят обзоры конструкций, размер которых в 1000 раз меньше, а по производительности выше БАК’а. В электронике или компьютерной технике постоянно идет миниатюризация при одновременном росте работоспособности.

Large Hardon Collider, LHC — a typical (albeit extremely) accelerator of charged particles in the beams, designed to disperse the protons and heavy ions (lead ions) and study the products of their collisions. BAC — this microscope, in which physics will unravel, what and how to make the matter of getting information about its device in a new, even more microscopic level.

Many waited eagerly, but what comes after his run, but nothing in principle and has not happened — our world is missing much that has happened is something really interesting and ambitious. Here it is a civilization and its crown of creation man, just got a sort of coalition of civilization and the people, unity, together for over a century, in a geometric progression zagazhivaem land, and beschinno destroying anything that accumulated millions of years. On this we will talk in another message, and so — that he Hadron Collider.

Despite the many and varied expectations of peoples and the media all went quiet and peacefully. Oh, how it was all bloated, like the newspaper firm by number of rooms: «BAC = the end of the world!», «The road to discovery or disaster?», «Annihilation catastrophe», almost the end of the world and things are a gigantic black hole in zasoset that all the land. Perhaps these theories put forward envious of physics, in which the school did not receive a certificate of completion from the figure 5, on the subject.

Here, for example, was a philosopher Democritus, who in ancient Greece (and, incidentally, today’s students write it in one word, as seen this strange non-existent, like the USSR, Czechoslovakia, Austria-Hungary, Saxony, Kurland, etc. — «Drevnyayagretsiya»), he had some theory that matter consists of indivisible particles — atoms, but the proof of this, scientists have found only after about 2350 years. Atom (indivisible) — can also be divided, it is found even after 50 years on the electrons and nuclei and the nucleus — protons and neutrons at. But they, as it turned out, not the smallest particles and, in turn, are composed of quarks. To date, physics believe that quarks — the limit of division of matter and anything less does not exist. We know of six types of quarks: the ceiling, strange, charmed, charming, genuine, bottom — and they are connected via gluons.

The word «Collider» comes from the English collide — face. In the collider, two particles start flying towards each other and with the collision energy beams added. While in conventional accelerators, which are under construction and work for several decades (the first of their models on moderate size and power, appeared before the Second World War in the 30-s), puchek strikes on fixed targets and the energy of the collision is much smaller.

«Hadronic» collider named because it is designed to disperse the hadrons. Hadrons — is a family of elementary particles, which include protons and neutrons, composed of the nucleus of all atoms, as well as a variety of mesons. An important feature of hadrons — that they are not truly elementary particles, and are composed of quarks, «glued» gluon.

The big collider has been because of its size — is the largest physical experimental setup ever in the world, only the main accelerator ring stretches for more than 26 km.

It is assumed that the velocity of dispersed tank will 0.9999999998 protons to the speed of light, and the number of collisions of particles originating in the accelerator every second, to 800 million total energy of colliding protons will be 14 TeV (14 teraelektro-volt, and the nuclei of lead — 5.5 GeV for each pair of colliding nucleons. nucleons (from Lat. nucleus — nucleus) — the generic name for the protons and neutrons.

There are different views on the creation of accelerator technology to date: some say that it came to its logical side, others that there is no limit to perfection — and the various surveys provided an overview of structures, which are 1000 times smaller, but higher productivity BUCK ‘ Yes. In the electronics or computer technology is constantly miniaturization, while the growth of efficiency.

Где находится большой адронный коллайдер?

В 2008 году CERN (Европейский совет ядерных исследований) завершил строительство сверхмощного ускорителя частиц, названного Большой адронный коллайдер. По-английски: LHC – Large Hadron Collider. CERN – международная межправительственная научная организация, образованная в 1955 году. По сути, это главная лаборатория мира в областях высоких энергий, физики частиц и солнечной энергетики . Членами организации являются порядка 20 стран.

Зачем нужен большой адронный коллайдер?

В окрестностях Женевы в 27-километровом (26 659 м) круговом бетонном тоннеле создано кольцо сверхпроводящих магнитов для разгона протонов. Предполагается, что ускоритель поможет не только проникнуть в тайны микроструктуры материи, но и позволит продвинуться в поисках ответа на вопрос о новых источниках энергии в глубине материи.

С этой целью одновременно со строительством самого ускорителя (стоимостью свыше 2 млрд долларов) созданы четыре детектора частиц. Из них два больших универсальных (CMS и ATLAS) и два – более специализированных. Общая стоимость детекторов приближается также к 2 млрд долларов. В каждом из больших проектов CMS и ATLAS приняли участие свыше 150 институтов из 50 стран, в том числе российских и белорусских.

Охота за неуловимым бозоном Хиггса

Как работает адронный коллайдер ускоритель? Коллайдер – это крупнейший ускоритель протонов, работающий на встречных пучках. В результате ускорения каждый из пучков будет иметь энергию в лабораторной системе 7 тераэлектрон-вольт (ТэВ), то есть 7x1012 электрон-вольт. При столкновении протонов образуется множество новых частиц, которые будут регистрироваться детекторами. После анализа вторичных частиц полученные данные помогут ответить на фундаментальные вопросы, волнующие ученых, занимающихся физикой микромира и астрофизикой. В числе главных вопросов – экспериментальное обнаружение бозона Хиггса.

Ставший «знаменитым» бозон Хиггса – гипотетическая частица, являющаяся одним из главных компонентов так называемой стандартной, классической модели элементарных частиц. Назван по имени британского теоретика Питера Хиггса, предсказавшего его существование в 1964 году. Считается, что хиггсовские бозоны, будучи квантами поля Хиггса, имеют отношение к фундаментальным вопросам физики. В частности – к концепции происхождения масс элементарных частиц.

2-4 июля 2012 ряд экспериментов на коллайдере выявили некую частицу, которую можно соотнести с бозоном Хиггса. Причем, данные подтвердились при измерении и системой ATLAS, и системой CMS. До сих пор идут споры, действительно ли открыт пресловутый бозон Хиггса, или это другая частица. Факт в том, что обнаруженный бозон – самый тяжелый из ранее фиксировавшихся. Для решения фундаментального вопроса были приглашены ведущие физики мира: Джеральд Гуральник, Карл Хаген, Франсуа Энглер и сам Питер Хиггс, теоретически обосновавший в далеком 1964 году существование бозона, названного в его честь. После анализа массива данных, участники исследования склонны считать, что бозон Хиггса действительно обнаружен.

Многие физики надеялись, что при исследовании бозона Хиггса выявятся «аномалии», которые заставили бы говорить о так называемой «Новой физике». Однако к концу 2014 года обработан почти весь массив данных, накопленный за три предыдущих года в результате экспериментов на БАК, и интригующих отклонений (за исключением отдельных случаев) не выявлено. На поверку оказалось, что двухфотонный распад пресловутого бозона Хиггса оказался, по словам исследователей, «слишком стандартным». Впрочем, намеченные на весну 2015 года эксперименты могут удивить научный мир новыми открытиями.

Не бозоном единым

Поиск бозона Хиггса – не самоцель гигантского проекта. Для ученых также важен поиск новых видов частиц, позволяющих судить о едином взаимодействии природы на ранней стадии существования Вселенной. Сейчас ученые различают четыре фундаментальных взаимодействия природы: сильное, электромагнитное, слабое и гравитационное. Теория предполагает, что на начальной стадии Вселенной, возможно, существовало единое взаимодействие. Если новые частицы будут открыты, то подтвердится эта версия.

Физиков также волнует вопрос о загадочном происхождении массы частиц. Почему частицы вообще имеют массу? И почему они имеют такие массы, а не другие? Попутно здесь всегда имеется в виду формула Е =mc ². В любом материальном объекте есть энергия. Вопрос в том, как ее высвободить. Как создать такие технологии, которые позволили бы высвобождать ее из вещества с максимальным коэффициентом полезного действия? На сегодня это основной вопрос энергетики.

Иными словами, проект Большого адронного коллайдера поможет ученым найти ответы на фундаментальные вопросы и расширить знания о микромире и, таким образом, – о происхождении и развитии Вселенной.

Вклад белорусских и российских ученых и инженеров в создание БАК

На этапе строительства европейские партнеры из CERN обратились к группе белорусских ученых, имеющих серьезные наработки в этой области, принять участие в создании детекторов для LHC с самого начала проекта. В свою очередь, белорусские ученые пригласили к сотрудничеству коллег Объединенного института ядерных исследований из наукограда Дубна и других российских институтов. Специалисты единой командой приступили к работе над так называемым детектором CMS – «Компактным мюонным соленоидом». Он состоит из многих сложнейших подсистем, каждая из которых сконструирована так, чтобы выполнялись специфические задачи, при этом совместно они обеспечивают идентификацию и точное измерение энергий и углов вылета всех частиц, рождающихся в момент протонных столкновений в БАК.

Белорусско-российские специалисты также участвовали в создании детектора ATLAS. Это установка высотой 20 м, способная измерить траектории частиц с высокой точностью: до 0,01 мм. Чувствительные датчики внутри детектора содержат около 10 млрд транзисторов. Приоритетная цель эксперимента ATLAS состоит в обнаружении бозона Хиггса, изучении его свойств.

Без преувеличения, наши ученые внесли существенный вклад в создание детекторов CMS и ATLAS. Некоторые важные компоненты были изготовлены на минском Машиностроительном заводе им. Октябрьской революции (МЗОР). В частности – торцевые адронные калориметры для эксперимента CMS. Кроме того, завод произвел весьма сложные элементы магнитной системы детектора ATLAS. Это крупногабаритные изделия, требующие владения специальными технологиями обработки металлов и сверхточной обработки. По оценке техников CERN, заказы были выполнены блестяще.

Нельзя недооценивать и «вклад личностей в историю». Например, инженер кандидат технических наук Роман Стефанович ответственен в проекте CMS за сверхточную механику. В шутку даже говорят, что без него CMS не был бы собран. Но если серьезно, то можно вполне определенно утверждать: без него сроки сборки и наладки при требуемом качестве не были бы выдержаны. Другой наш инженер-электронщик Владимир Чеховский, пройдя достаточно сложный конкурс, сегодня отлаживает электронику детектора CMS и его мюонных камер.

Наши ученые участвуют как в запуске детекторов, так и в лабораторной части, в их эксплуатации, поддержании и обновлении. Ученые из Дубны и их белорусские коллеги полноправно занимают свои места в международном физическом сообществе CERN, которое трудится ради получения новой информации о глубинных свойствах и строении материи.

Видео

Обзор от канала Простая наука, наглядно показывающий принцип действия ускорителя:

Обзор от уанала Галилео:

Обзор от уанала Галилео:

Адронный коллайдер запуск 2015:

Новость о проводимом в Европе эксперименте сколыхнула общественное спокойствие, поднявшись на первые позиции списка обсуждаемых тем. Адронный коллайдер засветился всюду – на ТВ, в прессе и интернете. Что уж говорить, если жж-юзеры создают отдельные сообщества, где уже сотни неранодушных активно высказали свое мнения по поводу нового детища науки. «Дело» предлагает вам 10 фактов, которые нельзя не знать об адронном коллайдере .

Таинственное научное словосочетание перестает быть таковым, как только мы разберемся со значенем каждого из слов. Адрон – название класса элементарных частиц. Коллайдер – специальный ускоритель, с помощью которого возможно передать элементарным частицам вещества высокую энергию и, разогнав до высочайшей скорости, воспроизвести их столкновение друг с другом.

2. Почему о нем все говорят?

По мнению ученых Европейского центра ядерных исследований CERN, эксперимент позволит воспроизвести в миниатюре взрыв, в результате которого миллиарды лет назад образовалась Вселенная. Однако больше всего общественность волнует то, какими будут последствия мини-взрыва для планеты в случае неудачного исхода эксперимента. По мнению некоторых ученых, в результате сталкивания элементарных частиц, летящих с ультрарелятивистскими скоростями в противоположных направлениях, образуются микроскопические черные дыры, а также вылетят другие опасные частицы. Полагаться же на специальное излучение, приводящее к испарению черных дыр особо не стоит – экспериментальных подтверждений тому, что оно работает, нет. Потому-то к такой научной инновации и возникает недоверие, активно подогреваемое скептически настроенными учеными.

3. Как работает эта штуковина?

Элементарные частицы разгоняются на разных орбитах в противоположных направлениях, после чего помещаются на одну орбиту. Ценность замысловатого устройства в том, что благодаря ему ученые получают возможность исследовать продукты столкновения элементарных частиц, фиксируемые специальными детекторами в виде цифровых фотокамеры с разрешением в 150 мегапикселей, способных делать 600 миллионов кадров в секунду.

4. Когда появилась идея создать коллайдер?

Идея строительства машины родилась еще в 1984 году, однако строительство туннеля началось только в 2001 году. Ускоритель расположен в том же туннеле, где прежде находился предыдущий ускоритель – Большой электрон-позитронный коллайдер. 26,7 – километровое кольцо проложено на глубине около ста метров под землёй на территории Франции и Швейцарии. 10 сентября в ускорителе был запущен первый пучок протонов. В ближайшие несколько дней будет запущен второй пучок.

5. Во сколько обошлось строительство?

В разработке проекта участвовали сотни ученых всего мира, в том числе и российские. Его стоимость оценивается в 10 миллиардов долларов, из них 531 миллион в строительство адронного коллайдера вложили США.

6. Какой вклад внесла Украина в создание ускорителя?

Ученые украинского Института теоретической физики приняли непосредственное участие в построении андронного коллайдера. Специально для исследований ими была разработана внутренняя трековая система (ITS). Она является сердцем «Алисы» — части коллайдера , где должен произойти миниатюрный «большой взрыв». Очевидно, весьма не последняя по значимости деталь машины. Украина должна ежегодно выплачивать 200 тысяч гривен за право участия в проекте. Это в 500-1000 раз меньше взносов в проект других стран.

7. Когда ждать конца света?

Первый эксперимент по столкновению пучков элементарных частиц намечен на 21 октября. До этого времени ученые планируют разогнать частицы до скорости, приблеженной к скорости света. Согласно общей теории относительности Эйнштейна, черные дыры нам не грозят. Однако в случае, если теории с дополнительными пространственными измерениями окажутся верны, у нас осталось не очень много времени, чтоб успеть решить все свои вопросы на планете Земля.

8. Чем страшны черные дыры?

Чёрная дыра - область в пространстве-времени, сила гравитационного притяжения которой настолько сильна, что даже объекты, движущиеся со скоростью света, не могут ее покинуть. Существования черных дыр подтверждается решениями уравнений Эйнштейна. Не смотря на то, многие уже представляют себе, как образовавшаяся в Европе черная дыра, разрастаясь, поглотит всю планету, бить тревогу не стоит. Черные дыры , которые, согласно некоторым теориям, могут появиться при работе коллайдера , согласно все тем же теориям, будут существовать на протяжении настолько короткого отрезка времени, что просто не успеют начать процесс поглощения материи. По утверждениям некоторых ученых, они даже не успеют долететь до стенок коллайдера.

9. Чем могут быть полезны исследования?

Помимо того, что данные исследования – очередное невероятное достижения науки, которое позволит человечеству узнать состав элементарных частиц, это еще не весь выигрыш, ради которого человечество пошло на такой риск. Возможно, в скором будущем мы с вами сможем воочию увидеть динозавров и обсудить наиболее эффективные военные стратегии с Наполеоном. Российские ученые полагают, что в результате эксперимента человечеству станет посильным создание машины времени.

10. Как произвести впечатление научно подкованного человека с помощью адронного коллайдера?

Ну и наконец, если кто-либо, заранее вооружившись ответом, спросит у вас, что же это такое адронный коллайдер, предлагаем вам достойный вариант ответа, способного приятно удивить любого. Итак, пристегнули ремни! Адронный коллайдер - ускоритель заряженных частиц, предназначенный для разгона протонов и тяжёлых ионов на встречных пучках. Построен в научно-исследовательском центре Европейского совета ядерных исследований и представляет собой 27-километровый туннель, проложенный на глубине 100 метров. В связи с тем, что протоны электрически заряжены, ультрарелятивистский протон порождает облако почти реальных фотонов, летящих рядом с протоном. Этот поток фотонов становится ещё сильнее в режиме ядерных столкновений, из-за большого электрического заряда ядра. Они могут столкнуться как со встречным протоном, порождая типичные фотон-адронные столкновения, так и друг с другом. Ученые побаиваются, что в результате эксперимента могут образоваться пространственно-временны́е «туннели» в пространстве, которые являются типологической особенностью пространства-времени. В результате эксперимента также может быть доказано существование суперсимметрии, которая, таким образом, станет косвенным подтверждением истинности теории суперструн.

Сокращённо БАК (англ. Large Hadron Collider, сокращённо LHC) - ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений. Коллайдер построен в ЦЕРНе (Европейский совет ядерных исследований), находящемся около Женевы, на границе Швейцарии и Франции. БАК является самой крупной экспериментальной установкой в мире. В строительстве и исследованиях участвовали и участвуют более 10 тыс. учёных и инженеров из более чем 100 стран.

Большим назван из-за своих размеров: длина основного кольца ускорителя составляет 26 659 м; адронным - из-за того, что он ускоряет адроны, то есть тяжёлые частицы, состоящие из кварков; коллайдером (англ. collider - сталкиватель) - из-за того, что пучки частиц ускоряются в противоположных направлениях и сталкиваются в специальных точках столкновения.

Технические характеристики BAK

В ускорителе предполагается сталкивать протоны с суммарной энергией 14 ТэВ (то есть 14 тераэлектронвольт или 14·1012 электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5 ГэВ (5·109 электронвольт) на каждую пару сталкивающихся нуклонов. На начало 2010 года БАК уже несколько превзошел по энергии протонов предыдущего рекордсмена - протон-антипротонный коллайдер Тэватрон, который до конца 2011 года работал в Национальной ускорительной лаборатории им. Энрико Ферми (США). Несмотря на то, что наладка оборудования растягивается на годы и ещё не завершена, БАК уже стал самым высокоэнергичным ускорителем элементарных частиц в мире, на порядок превосходя по энергии остальные коллайдеры, в том числе и релятивистский коллайдер тяжёлых ионов RHIC, работающий в Брукхейвенской лаборатории (США).

Светимость БАК во время первых недель работы пробега была не более 1029 частиц/см 2 ·с, тем не менее она продолжает постоянно повышаться. Целью является достижение номинальной светимости в 1,7·1034 частиц/см 2 ·с, что по порядку величины соответствует светимостям BaBar (SLAC, США) и Belle (англ.) (KEK, Япония).

Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер . Туннель с длиной окружности 26,7 км проложен под землёй на территории Франции и Швейцарии. Глубина залегания туннеля - от 50 до 175 метров, причём кольцо туннеля наклонено примерно на 1,4 % относительно поверхности земли. Для удержания, коррекции и фокусировки протонных пучков используются 1624 сверхпроводящих магнита, общая длина которых превышает 22 км. Магниты работают при температуре 1,9 K (-271 °C), что немного ниже температуры перехода гелия в сверхтекучее состояние.

Детекторы БАК

На БАК работают 4 основных и 3 вспомогательных детектора:

  • ALICE (A Large Ion Collider Experiment)
  • ATLAS (A Toroidal LHC ApparatuS)
  • CMS (Compact Muon Solenoid)
  • LHCb (The Large Hadron Collider beauty experiment)
  • TOTEM (TOTal Elastic and diffractive cross section Measurement)
  • LHCf (The Large Hadron Collider forward)
  • MoEDAL (Monopole and Exotics Detector At the LHC).

ATLAS, CMS, ALICE, LHCb - большие детекторы, расположенные вокруг точек столкновения пучков. Детекторы TOTEM и LHCf - вспомогательные, находятся на удалении в несколько десятков метров от точек пересечения пучков, занимаемых детекторами CMS и ATLAS соответственно, и будут использоваться попутно с основными.

Детекторы ATLAS и CMS - детекторы общего назначения, предназначены для поиска бозона Хиггса и «нестандартной физики», в частности тёмной материи, ALICE - для изучения кварк-глюонной плазмы в столкновениях тяжёлых ионов свинца, LHCb - для исследования физики b-кварков, что позволит лучше понять различия между материей и антиматерией, TOTEM - предназначен для изучения рассеяния частиц на малые углы, таких что происходит при близких пролётах без столкновений (так называемые несталкивающиеся частицы, forward particles), что позволяет точнее измерить размер протонов, а также контролировать светимость коллайдера, и, наконец, LHCf - для исследования космических лучей, моделируемых с помощью тех же несталкивающихся частиц.

С работой БАК связан также седьмой, совсем незначительный в плане бюджета и сложности, детектор (эксперимент) MoEDAL, предназначенный для поиска медленно движущихся тяжёлых частиц.

Во время работы коллайдера столкновения проводятся одновременно во всех четырёх точках пересечения пучков, независимо от типа ускоряемых частиц (протоны или ядра). При этом все детекторы одновременно набирают статистику.

Ускорение частиц в коллайдере

Скорость частиц в БАК на встречных пучках близка к скорости света в вакууме. Разгон частиц до таких больших энергий достигается в несколько этапов. На первом этапе низкоэнергетичные линейные ускорители Linac 2 и Linac 3 производят инжекцию протонов и ионов свинца для дальнейшего ускорения. Затем частицы попадают в PS-бустер и далее в сам PS (протонный синхротрон), приобретая энергию в 28 ГэВ. При этой энергии они уже движутся со скоростью близкой к световой. После этого ускорение частиц продолжается в SPS (протонный суперсинхротрон), где энергия частиц достигает 450 ГэВ. Затем сгусток протонов направляют в главное 26,7-километровое кольцо, доводя энергию протонов до максимальных 7 ТэВ, и в точках столкновения детекторы фиксируют происходящие события. Два встречных пучка протонов при полном заполнении могут содержать 2808 сгустков каждый. На начальных этапах отладки процесса ускорения циркулируют лишь по одному сгустку в пучке длиной несколько сантиметров и небольшого поперечного размера. Затем начинают увеличивать количество сгустков. Сгустки располагаются в фиксированных позициях относительно друг друга, которые синхронно движутся вдоль кольца. Сгустки в определённой последовательности могут сталкиваться в четырёх точках кольца, где расположены детекторы частиц.

Кинетическая энергия всех сгустков адронов в БАКе при полном его заполнении сравнима с кинетической энергией реактивного самолета, хотя масса всех частиц не превышает нанограмма и их даже нельзя увидеть невооружённым глазом. Такая энергия достигается за счёт скорости частиц, близкой к скорости света.

Сгустки проходят полный круг ускорителя быстрее, чем за 0,0001 сек, совершая, таким образом, свыше 10 тыс. оборотов в секунду

Цели и задачи БАК

Главная задача Большого адронного коллайдера - выяснить устройство нашего мира на расстояниях меньше 10 –19 м, "прощупав" его частицами с энергией несколько ТэВ. К настоящему времени уже накопилось много косвенных свидетельств того, что на этом масштабе физикам должен открыться некий «новый пласт реальности», изучение которого даст ответы на многие вопросы фундаментальной физики. Каким именно окажется этот пласт реальности - заранее не известно. Теоретики, конечно, предложили уже сотни разнообразных явлений, которые могли бы наблюдаться на энергиях столкновений в несколько ТэВ, но именно эксперимент покажет, что на самом деле реализуется в природе.

Поиск Новой физики Стандартную модель не может считаться окончательной теорией элементарных частиц. Она должна быть частью некоторой более глубокой теории строения микромира, той частью, которая видна в экспериментах на коллайдерах при энергиях ниже примерно 1 ТэВ. Такие теории коллективно называют «Новая физика» или «За пределами Стандартной модели». Главная задача Большого адронного коллайдера - получить хотя бы первые намеки на то, что это за более глубокая теория. Для дальнейшего объединения фундаментальных взаимодействий в одной теории используются различные подходы: теория струн, получившая своё развитие в М-теории (теории бран), теория супергравитации, петлевая квантовая гравитация и др. Некоторые из них имеют внутренние проблемы, и ни у одной из них нет экспериментального подтверждения. Проблема в том, что для проведения соответствующих экспериментов нужны энергии, недостижимые на современных ускорителях заряженных частиц. БАК позволит провести эксперименты, которые ранее были невозможны и, вероятно, подтвердит или опровергнет часть этих теорий. Так, существует целый спектр физических теорий с размерностями больше четырёх, которые предполагают существование «суперсимметрии» - например, теория струн, которую иногда называют теорией суперструн именно из-за того, что без суперсимметрии она утрачивает физический смысл. Подтверждение существования суперсимметрии, таким образом, будет косвенным подтверждением истинности этих теорий. Изучение топ-кварков Топ-кварк - самый тяжёлый кварк и, более того, это самая тяжёлая из открытых пока элементарных частиц. Согласно последним результатам Тэватрона, его масса составляет 173,1 ± 1,3 ГэВ/c 2 . Из-за своей большой массы топ-кварк до сих пор наблюдался пока лишь на одном ускорителе - Тэватроне, на других ускорителях просто не хватало энергии для его рождения. Кроме того, топ-кварки интересуют физиков не только сами по себе, но и как «рабочий инструмент» для изучения бозона Хиггса. Один из наиболее важных каналов рождения бозона Хиггса в БАК - ассоциативное рождение вместе с топ-кварк-антикварковой парой. Для того, чтобы надёжно отделять такие события от фона, предварительно необходимо изучение свойств самих топ-кварков. Изучение механизма электрослабой симметрии Одной из основных целей проекта является экспериментальное доказательство существования бозона Хиггса - частицы, предсказанной шотландским физиком Питером Хиггсом в 1964 году в рамках Стандартной модели. Бозон Хиггса является квантом так называемого поля Хиггса, при прохождении через которое частицы испытывают сопротивление, представляемое нами как поправки к массе. Сам бозон нестабилен и имеет большую массу (более 120 ГэВ/c 2). На самом деле, физиков интересует не столько сам бозон Хиггса, сколько хиггсовский механизм нарушения симметрии электрослабого взаимодействия. Изучение кварк-глюонной плазмы Ожидается, что примерно один месяц в год будет проходить в ускорителе в режиме ядерных столкновений. В течение этого месяца коллайдер будет разгонять и сталкивать в детекторах не протоны, а ядра свинца. При неупругом столкновении двух ядер на ультрарелятивистских скоростях на короткое время образуется и затем распадается плотный и очень горячий комок ядерного вещества. Понимание происходящих при этом явлений (переход вещества в состояние кварк-глюонной плазмы и её остывание) нужно для построения более совершенной теории сильных взаимодействий, которая окажется полезной как для ядерной физики, так и для астрофизики. Поиск суперсимметрии Первым значительным научным достижением экспериментов на БАК может стать доказательство или опровержение «суперсимметрии» - теории, гласящей, что любая элементарная частица имеет гораздо более тяжёлого партнера, или «суперчастицу». Изучение фотон-адронных и фотон-фотонных столкновений Электромагнитное взаимодействие частиц описывается как обмен (в ряде случаев виртуальными) фотонами. Другими словами, фотоны являются переносчиками электромагнитного поля. Протоны электрически заряжены и окружены электростатическим полем, соответственно это поле можно рассматривать как облако виртуальных фотонов. Всякий протон, особенно релятивистский протон, включает в себя облако виртуальных частиц как составную часть. При столкновении протонов между собой взаимодействуют и виртуальные частицы, окружающие каждый из протонов. Математически процесс взаимодействия частиц описывается длинным рядом поправок, каждая из которых описывает взаимодействие посредством виртуальных частиц определённого типа (см.: диаграммы Фейнмана). Таким образом, при исследовании столкновения протонов косвенно изучается и взаимодействие вещества с фотонами высоких энергий, представляющее большой интерес для теоретической физики. Также рассматривается особый класс реакций - непосредственное взаимодействие двух фотонов, которые могут столкнуться как со встречным протоном, порождая типичные фотон-адронные столкновения, так и друг с другом. В режиме ядерных столкновений, из-за большого электрического заряда ядра, влияние электромагнитных процессов имеет ещё большее значение. Проверка экзотических теорий Теоретики в конце XX века выдвинули огромное число необычных идей относительно устройства мира, которые все вместе называются «экзотическими моделями». Сюда относятся теории с сильной гравитацией на масштабе энергий порядка 1 ТэВ, модели с большим количеством пространственных измерений, преонные модели, в которых кварки и лептоны сами состоят из частиц, модели с новыми типами взаимодействия. Дело в том, что накопленных экспериментальных данных оказывается всё ещё недостаточно для создания одной-единственной теории. А сами все эти теории совместимы с имеющимися экспериментальными данными. Поскольку в этих теориях можно сделать конкретные предсказания для БАК, экспериментаторы планируют проверять предсказания и искать следы тех или иных теорий в своих данных. Ожидается, что результаты, полученные на ускорителе, смогут ограничить фантазию теоретиков, закрыв некоторые из предложенных построений. Другое Также ожидается обнаружение физических явлений вне рамок Стандартной Модели. Планируется исследование свойств W и Z-бозонов, ядерных взаимодействий при сверхвысоких энергиях, процессов рождения и распадов тяжёлых кварков (b и t).