U критерий манна уитни онлайн калькулятор. Непараметрические методы сравнения двух выборок и их применение в R

где
,

7. Определить критическое значение -критерия (см. прил., табл. А3).

8. Сравнить расчетное и критическое значение -критерия. Если расчетное значе­ние больше или равно критическому, то гипотеза
равенства средних значений в двух выборках изменений отвергается. Во всех других случаях она прини­мается на заданном уровне значимости.

Лекция 4. Критерии для непараметрических распределений

4.1. -Критерий Манна-Уитни

Назначение критерия. Критерий предназначен для оценки различии между двумя непараметрическими вы­борками по уровню какого-либо признака, количественно измеренного. Он позволяет выявлять различия между малыми выборками, когда

Описание критерия

Этот метод определяет, достаточно ли мала зона пересекающихся значений между двумя рядами. Чем меньше эта область, тем более вероятно, что различия достоверны. Эмпирическое значение критерия и отражает то, насколько велика зона совпадения между рядами. Поэтому, чем меньше
тем более вероятно, что различия достоверны.

Гипотезы

Уровень признака в группе 2 не ниже уровня признака в группе 1.

Уровень признака в группе 2 ниже уровня признака в группе 1.

Алгоритм расчета критерия Манна-Уитни

1. Перенести все данные испытуемых на индивидуальные карточки.

2. Пометить карточки испытуемых выборки 1 одним цветом, скажем, красным, а все карточки из выборки 2 – другим, например синим.

3. Разложить все карточки в единый ряд по степеням нарастания признака, не считаясь с тем, к какой выборке они относятся, как если бы была одна большая выборка.

4. Проранжировать значения на карточках, приписывая меньшему значению меньший ранг.

5. Вновь разложить карточки на две группы, ориентируясь на цветные обозначения: красные карточки в один ряд, синие – в другой.

7. Определить большую из двух ранговых сумм.

8. Определить по формуле значение

,

где
количество испытуемых в выборке 1;
количество испытуемых в выборке 2;
большая из двух ранговых сумм;
количество испытуемых в группе с большей суммой рангов.

9. Определить критические значения . Если
то

гипотеза
принимается. Если
то отвергается. Чем меньше

значения , тем достоверность различий выше.

Пример. Сравнить эффективность двух методов обучения в двух группах. Результаты испытаний представлены в таблице 4.

Таблица 4

Перенесем все данные в другую таблицу, выделив данные второй группы, подчеркиваем и делаем ранжирование общей выборки (см. алгоритм ранжирования в методических указаниях к заданию).

Значения

Найдем сумму рангов двух выборок и выберем большую из них:

Рассчитаем эмпирическое значение критерия по формуле (3)

Определим критическое значение критерия при уровне значи­мости
(см. прил. табл. А1)

Вывод: так как расчетное значение критерия больше критического при уровне зна­чимости
и
, гипотеза о равенстве средних принимается, различия в методиках обучения будут несущественны.

Критерий в математической статистике - это строгое правило, в соответствии с которым гипотеза с определённым уровнем значимости принимается или отвергается. Чтобы построить его, необходимо найти определенную функцию. Она должна зависеть от конечных результатов эксперимента, то есть от эмпирически найденных значений. Именно эта функция будет являться инструментом оценки расхождения между выборками.

Статистически значимая величина. Общие сведения

Статистическая значимость - это величина, вероятность случайного возникновения которой очень мала. Незначительны также и более крайние ее показатели. Разницу называют статистически значимой в том случае, если существуют данные, вероятность появления которых незначительна, если утверждать, что эти расхождения не существуют. Но это не значит вовсе, что эта разница обязательно должна быть велика и значима.

Уровень статистической достоверности теста

Под данным термином следует понимать вероятность отклонения нулевой гипотезы в случае её истинности. Это также называется ошибкой первого рода или ложноположительным решением. В большинстве случаев процесс опирается на p-величину ("пи-величина"). Это накопленная вероятность при наблюдении за уровнем статистического критерия. Он, в свою очередь, насчитывается по выборке во время принятия нулевой гипотезы. Предположение будет отвергнуто, если эта p-величина будет меньше заявленного аналитиком уровня. От этого показателя зависит напрямую значимость тестовой величины: чем она меньше, тем, соответственно, и больше оснований отвергнуть гипотезу.

Уровень значимости, как правило, обозначается буквой б (альфа). Популярные показатели среди специалистов: 0,1%, 1%, 5% и 10%. Если, скажем, говорится, что шансы на совпадения равны 1 к 1000, то определённо речь идёт об уровне 0,1% статистической значимости случайной величины. Различные по значению б-уровни имеют свои плюсы и минусы. Если показатель меньше, то больше вероятность, что альтернативная гипотеза значимая. Хотя при этом возможен риск, что ложное нулевое предположение не будет отвергнуто. Можно сделать вывод, что выбор оптимального б-уровня зависит от баланса "значимость-мощность" или, соответственно, от компромисса вероятностей ложноположительного и ложноотрицательного решений. Синонимом "статистической значимости" в отечественной литературе является термин "достоверность".

Определение нулевой гипотезы

В математической статистике проверяемое на согласованность с уже имеющимися в запасе эмпирическими данными. В большинстве случаев в качестве нулевой гипотезы берётся гипотеза о том, что корреляция между исследуемыми переменными отсутствует или что в изучаемых распределениях нет различий однородности. При стандартных исследованиях математик пытается опровергнуть нулевую гипотезу, то есть доказать, что она не согласована с экспериментально полученными данными. Причем должно иметь место и альтернативное предположение, которое принимается вместо нулевого.

Ключевое определение

Критерий U (Манна-Уитни) в позволяет оценивать различия двух выборок. Они могут быть даны по уровню некоего признака, который измерен количественно. Этот метод идеален для оценки различий малых выборок. Этот простой критерий был предложен Фрэнком Уилкоксоном в 1945 году. А уже в 1947 году метод был пересмотрен и дополнен учёными Х. Б. Манном и Д. Р. Уитни, именами которых он и именуется по сей день. Критерий Манна-Уитни в психологии, математике, статистике и во многих других науках является одним из основополагающих элементов математического обоснования результатов теоретических исследований.

Описание

Критерий Манна-Уитни - относительно простой метод без параметров. Его мощность значительна. Она существенно выше, чем мощность Q-критерия Розенбаума. Метод оценивает, насколько мала область перекрёстных значений между выборками, а именно между ранжированными рядами значений первой и второй подборки. Чем значение критерия меньше, тем больше вероятность, что расхождения значений параметра достоверны. Чтобы корректно применить критерий U (Манна-Уитни), не стоит забывать о некоторых ограничениях. В каждой выборке должно быть как минимум 3 значения признака. Возможна ситуация, когда в одном случае значений два, но во втором обязательно тогда их должно быть хотя бы пять. В исследуемых выборках должно быть минимальное количество совпадающих показателей. Все числа должны быть разными в идеальном случае.

Использование

Как правильно использовать критерий Манна-Уитни? Таблица, которая составлена по данному методу, содержит определенные критические значения. Для начала нужно создать единый ряд из обеих сопоставленных выборок, который затем ранжируется. То есть элементы выстраиваются по степени нарастания признака, и меньший ранг присваивается меньшему значению. В итоге получим такое общее число рангов:

N = N1 + N2,

где величины N1 и N2 - количество единиц, содержащихся в первой и второй выборках соответственно. Далее единый ранжированный ряд значений делится на две категории. Единицы, соответственно, из первой и второй выборок. Теперь считается по очереди сумма рангов значений в первом и во втором рядах. Определяется большая из них (Tx), которая соответствует выборке с nx единицами. Чтобы использовать метод Уилкоксона далее, вычисляется его значение по следующей методике. Необходимо по таблице для выбранного уровня значимости выяснить критическое значение этого критерия для конкретно взятых N1 и N2.

Получившийся показатель может быть меньше или равен значению из таблицы. В этом случае констатируется значительное различие уровней признака в исследуемых выборках. Если полученное значение больше табличного, тогда нулевая гипотеза принимается. Когда производится расчет критерия Манна-Уитни, следует заметить, что если нулевая гипотеза справедлива, критерий будет иметь а также дисперсию. Отметим, что при достаточно больших объёмах данных выборок метод считается практически нормально распределенным. Достоверность различий тем выше, чем меньшее значение принимает критерий Манна-Уитни.

В этой статье Вы узнаете, почему кроме t-теста существуют другие методы сравнения двух выборок. Начнем мы с того, что вспомним о нормальности данных и связанной с ней делением статистических тестов на две категории: параметрические и непараметрические. О последних мы поговорим более подробно: разберем три наиболее популярных теста, а также научимся их запускать в среде R.

Параметрический или непараметрический критерий различия?

Статистические методы, использующие параметры нормального распределения данных (среднее, стандартное отклонение и прочее) называются параметрическими . Так например, рассмотренный в предыдущей статье является типичным параметрическим методом. Почему? Потому, что главным условием для его проведения является нормальное распределение количественных данных. Непараметрические методы, напротив, не зависят от распределения данных и позволяют работать как с количественными, так и с порядковыми данными (например: размер обуви, шкала силы землетрясений).

При нормальном распределении данных параметрические критерии имеют большую мощность по сравнению с непараметрическими. Однако, когда данные выборок не проходят тесты нормальности (такие, как qqplot и Шапиро тест), непараметрические методы дают более точные предсказания. Особенно они эффективны с выборками небольшого размера (<100 наблюдений), на распределение которых могут влиять неизвестные факторы. Сегодня мы познакомимся с непараметрическими аналогами t-теста, использующимися также, для сравнения двух выборок. При выборе критерия следует обратить внимание на две вещи: зависимость данных выборок друг от друга и объем выборок.

На приведенном выше рисунке Вы видите упрощенную классификацию методов сравнения средних (или медиан) двух выборок. Мы кратко поговорим о каждом из непараметрических критериев, и научимся применять их в среде R. Чтож, приступим!

Критерий Уилкоксона

Начнем знакомство с непараметрических тестов для зависимых выборок. Прежде всего стоит отметить, что выборки называются зависимыми, когда испытуемые одной и той же группы были протестированы в разные моменты времени с меняющимися (1) или неменяющимися (2) условиями эксперимента. В первом случае проверяется эффект какого либо действия в сравнении с контрольным измерением ("до и после"), во втором - повторяемость результатов эксперимента ("контроль-повтор").

Тест Уилкоксона (от английского "Wilcoxon signed-rank test") является широко используемым и эффективным методом выявления различий между медианами двух зависимых выборок с распределением данных отличным от нормального. Он идеально подходит для сравнения маленьких выборок, где количество испытуемых/исследований больше 5, но меньше 50. Как и для всех критериев, рассмотренных в этой статье, данные могут быть как количественными, так и порядковыми. Метод был разработан в 1945 году американским статистиком и химиком Фрэнком Уилкоксоном (фото справа).

Чтобы запустить тест Уилкоксона в среде R следует загрузить данные выборок и ввести следующую команду:

wilcox.test("выборка_1", "выборка_2" , paired = T)

Как и в t-тесте, в непараметрических статистических тестах внутри скобок можно добавить дополнительные параметры, такие как alternative , conf.int , conf.level . Чтобы посмотреть все аргументы функции, поставьте перед ней знак вопроса, в нашем случае: ?wilcox.test

G-критерий знаков

Если же количество исследований в выборке больше 50, то следует использовать G-критерий знаков. Критерий знаков по статистической мощности уступает Уилкоксону, но превосходит большинство других непараметрических аналогов. Данные выборок должны быть зависимыми, количество исследований в выборке от 5, но не более 300 (про механизм расчетов и ограничения метода можно почитать ).

Провести тест в R не сложно, но потребуется сделать несколько манипуляций с данными. Сначала мы загрузим данные двух зависимых выборок, например систолическое (верхнее) давление до и после применения лекарства у 60 пациентов-гипертоников. Загрузим данные "before" и "after" в среду R. Затем визуализируем их.

before <- c(171.2, 169.8, 154.6, 130.9, 158.5, 145.5, 143.5, 144.7, 147.7, 160.7, 154.7, 181.8, 167.2, 137.4, 180.2, 138.7, 159.9, 141.8, 172.2, 167.0, 137.2, 170.9, 168.4, 163.7, 160.1, 163.5, 146.7, 173.9, 180.1, 136.0, 159.0, 145.6, 186.5, 177.7, 167.7, 167.4, 165.9, 147.2, 165.2, 133.3, 175.0, 174.7, 163.0, 154.1, 189.4, 166.5, 153.0, 134.3, 177.1, 150.4, 152.4, 176.2, 160.3, 135.3, 131.2, 172.1, 137.0, 156.6, 178.5, 168.1) after <- c(179.5, 141.9, 124.7, 103.2, 143.1, 146.0, 132.2, 104.9, 145.3, 123.5, 135.2, 176.2, 142.7, 114.1, 171.9, 115.0, 126.4, 108.0, 171.7, 148.8, 103.5, 178.5, 138.9, 150.0, 131.8, 169.2, 131.4, 138.8, 146.2, 116.1, 148.8, 109.2, 186.3, 164.1, 147.3, 165.3, 140.0, 122.6, 174.4, 104.6, 156.6, 175.3, 126.8, 122.6, 184.0, 139.6, 149.4, 105.3, 181.9, 134.6, 129.4, 148.0, 170.2, 144.2, 133.3, 171.8, 118.4, 131.2, 150.0, 131.0) boxplot(before, after, col = c(6,5), main = "The effect of treatment", outer = TRUE) axis(1, at=1:2, labels=c("before","after"))

Затем найдем разность между векторами "before" и "after" и назовем новый вектор "difference", после чего при помощи команды length узнаем его длину. Так как нас интересует, снижает ли лекарство давление у пациентов, мы узнаем какое количество элементов в векторе "difference" больше нуля. Это количество принято называть числом "успехов".

difference <- before - after difference length(difference) length(difference)

Теперь все готово для того, чтобы запустить G-критерий знаков в R. Для этого воспользуемся командой binom.test , где в параметрах функции укажем сначала число "успехов", затем число исследований в выборке.

binom.test(50, 60)

Нулевая гипотеза говорит о том, что медианы выборок статистически не отличаются, альтернативная - что статистические различия есть. В нашем случае p-value значительно меньше 0.05, поэтому мы можем с уверенностью отвергнуть нулевую гипотезу и принять альтернативую: две выборки статистически отличаются друг от друга. Также мы видим, что у 83% пациентов давление снизилось. Для демонстрации статистической значимости результатов эксперимента, просто добавьте к графику надпись p-value < 0.001.

Критерий Манна-Уитни

Этот тест также был изначально разработан и опубликован Уилкоксоном в 1945 году. Однако спустя два года его существенно усовершенствовали два математика, в честь которых и был назван критерий. В отличие от двух предыдущих критериев, тест Манна-Уитни используется при сравнении двух независимых выборок , также имеющих отклонения от нормального распределения. Подробнее об алгоритме расчета данного критерия можете почитать в этой статье .

Запустить тест Манна-Уитни в R крайне просто, используем уже известную нам функцию "wilcox.test" и убираем из скобок "paired = T":

wilcox.test("выборка_1", "выборка_2" )

Однако при проведении этого метода необходимо соблюдать два условия. Во-первых, одинаковые значения в выборке должны быть сведены к минимуму (все числа должны быть разными). Во-вторых, в каждой выборке должно быть не менее трех исследований (минимум 3 и 3, также допускается 5 и 2).

Заключение

Непараметрических методов существует великое множество, сегодня мы познакомились лишь с тремя наиболее используемыми критериями для сравнения двух выборок. В среде R эти тесты запустить довольно просто, поэтому главный акцент в выборе метода следует делать на его пригодность к решению конкретно Вашей задачи.

Критерий Манна-Уитни представляет непараметрическую альтернативу t -критерия для независимых выборок. Преимущество его состоит в том, что мы отказываемся от предположения нормальности распределения и одинаковых дисперсий. Необходимо, чтобы данные были измерены как минимум в порядковой шкале.

STATISTICA предполагает, что данные расположены тем же образом, что в и t -критерии для независимых выборок. Файл должен содержать кодовую (независимую) переменную, имеющую, по крайней мере, два разных кода для однозначной идентификации принадлежности каждого наблюдения к определенной группе.

Предположения и интерпретация. Критерий Манна-Уитни предполагает, что рассматриваемые переменные измерены, по крайней мере, в порядковой шкале (ранжированы). Интерпретация теста по существу похожа на интерпретацию результатов t -критерия для независимых выборок, за исключением того, что U критерий вычисляется, как сумма индикаторов попарного сравнения элементов первой выборки с элементами второй выборки. U критерий - наиболее мощная (чувствительная) непараметрическая альтернатива t-критерия для независимых выборок ; фактически, в некоторых случаях он имеет даже большую мощность, чем t -критерий.

Если объем выборки больше 20, то распределение выборки для U статистики быстро сходится к нормальному распределению (см. Siegel, 1956). Поэтому вместе с U статистикой будут показаны z значение (для нормального распределения и соответствующее p -значение.

Точные вероятности для малых выборок. Для выборок малого объема STATISTICA вычислит точную вероятность, связанную с соответствующей U статистикой. Эта вероятность основана на подсчете всех возможных значений U при заданном количестве наблюдений в двух выборках (см. Dinneen & Blakesley, 1973). Программа сообщит (в последнем столбце таблицы результатов) значение 2 * p, где p равно 1 минус кумулятивная (односторонняя) вероятность соответствующей U статистики. Заметим, что это обычно не приводит к большой недооценке статистической значимости соответствующих эффектов (см. Siegel, 1956).

Статистика критерия выглядит следующим образом.

где W - статистика Вилкоксона , предназначенная для проверки этой же гипотезы

в противном случае

Таким образом, статистика U считает общее число тех случаев, в которых элементы второй выборки превосходят элементы первой выборки. Если гипотеза верна, то

Критерий Манна-Уитни предполагает, что рассматриваемые переменные измерены, по крайней мере, в порядковой шкале (ранжированы). Интерпретация теста по существу похожа на интерпретацию результатов t -критерия для независимых выборок, за исключением того, что U критерий вычисляется, как сумма индикаторов попарного сравнения элементов первой выборки с элементами второй выборки. U критерий - наиболее мощная (чувствительная) непараметрическая альтернатива t -критерия для независимых выборок; фактически, в некоторых случаях он имеет даже большую мощность, чем t -критерий.

Если объем выборки больше 20, то распределение выборки для U статистики быстро сходится к нормальному распределению. Поэтому, вместе с U статистикой, будут показано z значение (для нормального распределения) и соответствующее p -значение.

Подробные инструкции по поводу того, как использовать критерий, вы можете найти дальше в части, касающейся примера применения.

Пример

Проверим гипотезу о принадлежности сравниваемых независимых выборок к одной и той же генеральной совокупности с помощью непараметрического U-критерия Манна-Уитни. Сравним результаты, полученные в примере Основные статистики и t-критерий Стьюдента для 2-го и 3-го столбцов таблицы по критерию Стьюдента, с результатами непараметрического сравнения.

Для расчета U-критерия Уилкоксона расположим варианты сравниваемых выборок в порядке возрастания в один обобщенный ряд и присвоим вариантам обобщенного ряда ранги от 1 до n1 + n2. Первая строка представляет собой варианты первой выборки, вторая - второй выборки, третья - соответствующие ранги в обобщенном ряду:





















Надо обратить внимание, что если имеются одинаковые варианты, им присваивается средний ранг, однако значение последнего ранга должно быть равно n1 + n2 (в нашем случае 20). Это правило используют для проверки правильности ранжирования.

Отдельно для каждой выборки рассчитываем суммы рангов их вариант R1 и R2. В нашем случае:

R1 = 1 + 2,5 + 2,5 + 5 + 5 + 9 + 9 + 9 + 12 + 14 = 69

R2 = 5 + 9 + 9 + 14 + 14 + 17 + 17 +17 + 19,5 + 19,5 = 141

Для проверки правильности вычислений можно воспользоваться другим правилом: R1 + R2 = 0,5 * (n1 + n2) * (n1 + n2 + 1). В нашем случае R1 + R2 = 210.

Статистика U1 = 69 - 10*11/2 = 14; U2 = 141 - 10*11/2 = 86.

Для проверки одностороннего критерия выбираем минимальную статистику U1 = 14 и сравниваем ее с критическим значением для n1 = n2 = 10 и уровня значимости 1%, равным 19.

Так как вычисленное значение критерия меньше табличного, нулевая гипотеза отвергается на выбранном уровне значимости, и различия между выборками признаются статистически значимыми. Таким образом, вывод о существовании различий, сделанный с помощью параметрического критерия Cтьюдента, подтверждается с помощью данного непараметрического метода.

Критерий предназначен для оценки различий между двумя выборками по уровню какого-либо количественно измеренного признака, при распределении вариант отличном от нормального . Более того, он позволяет выявлять различия между малыми выборками (когда n 1 , n 2 ³3 или n 1 =2, n 2 ³5). Этот метод определяет насколько слабо перекрещиваются (совпадают) значения между двумя выборками. Чем меньше перекрещивающихся значений, тем более вероятно, что различия достоверны.

Чем меньше U эмп тем более вероятно, что различия достоверны.

Нулевая гипотеза: уровень признака в выборке 2 не ниже уровня признака в выборке 1.

Прежде чем проводить оценку критерием U необходимо провести ранжирование.

ОПРЕДЕЛЕНИЕ: Ранжирование – распределение вариант внутри вариационного ряда от меньших величин к большим.

Правила ранжирования:

1. Меньшему значению начисляется меньший ранг, как правило, это 1. Наибольшему значению начисляется ранг, соответствующий количеству ранжируемых значений (если n=10, то наибольшее значение получит ранг 10).

2. Если несколько значений равны, им начисляется ранг, представляющийсобой среднее значение из тех рангов, которые они получили бы, если бы не были равны:

3. Общая сумма рангов должна совпадать с расчетной, которая определяется по формуле: , где N- общее количество ранжируемых значений. Несовпадение реальной и расчетной сумм рангов будет свидетельствовать об ошибке, допущенной при начислении рангов или их суммировании. Прежде чем продолжить работу, необходимо найти ошибку и устранить ее.

Пример .

Проранжируем следующий ряд.

По формуле проверим правильность ранжирования.

. Определим сумму рангов: 1+2,5+2,5+4+5+6+7=28.

Общая сумма рангов совпадает с расчетной. Следовательно мы правильно проранжировали.

Схема подсчета критерия Манна-Уитни:

Чем меньше значения U , тем достоверность различий выше и тем больше уверенности в отклонении нулевой гипотезы.


3 пример .

При заболеваниях сетчатки повышается проницаемость ее сосудов. Исследователи измерили проницаемость сосудов сетчатки у здоровых и у больных с ее поражением. Полученные результаты приведены в таблице.

Проверить, подтверждают ли эти данные гипотезу о различии в проницаемости сосудов сетчатки.

Нулевая гипотеза : проницаемость сосудов сетчатки при заболеваниях сетчатки у больных не больше, чем у здоровых, (нет статистического различия между двумя выборками).

Альтернативная гипотеза : проницаемость сосудов сетчатки при заболеваниях сетчатки у больных больше, чем у здоровых, (есть статистическое различие между двумя выборками).

Здоровые больные
Порядковый номер Ранг проницаемость сосудов сетчатки Порядковый номер Ранг
0,5 1,2 6,5
0,7 2,5 1,4
0,7 2,5 1,6
1,0 4,5 1,7
1,0 4,5 1,7
1,2 6,5 1,8
1,4 2,2 18,5
1,4 2,3
1,6 2,4
1,6 6,4
1,7
2,2 18,5 23,6