Как рассчитать ошибку аппроксимации. Проверка гипотез относительно коэффициентов линейного уравнения регрессии

Ошибка аппроксимации - один из наиболее часто возникающих вопросов при применении тех или иных методов аппроксимации исходных данных. Есть разного рода ошибки аппроксимации:

Ошибки, связанные с погрешностями исходных данных;

Ошибки, связанные с несоответствием аппроксимирующей модели структуре аппроксимируемых данных.

В Excel есть хорошо разработанная функция Линейн, предназначенная для обработки данных и аппроксимаций, в которой задействован отлаженный математический аппарат. Для того, чтобы иметь о ней представление, обратимся (через F1) к описательной части этой разработки, которую приводим с сокращениями и некоторыми изменениями обозначений.

Расчитывает статистику для ряда с применением метода наименьших квадратов, чтобы вычислить прямую линию, которая наилучшим образом аппроксимирует имеющиеся данные. Функция возвращает массив, который описывает полученную прямую. Поскольку возвращается массив значений, функция должна задаваться в виде формулы массива.

Уравнение для прямой линии имеет следующий вид:

y=a+b1*x1+b2*x2+...bn*xn

Синтаксис:

ЛИНЕЙН(y;x;конст;статистика)

Массив y - известные значения y.

Массив x - известные значеня x. Массив x может содержать одно или несколько множеств переменных.

Конст - это логическое значение, которое указывает, требуется ли, чтобы свободный член a был равен 0.

Если аргумент конст имеет значение ИСТИНА, 1 или опущено, то a вычисляется обычным образом. Если аргумент конст имеет значение ЛОЖЬ или 0, то a полагается равным 0.

Статистика - это логическое значение, которое указывает, требуется ли вернуть дополнительную статистику по регрессии. Если аргумент статистика имеет значение ИСТИНА или 1, то функция ЛИНЕЙН возвращает дополнительную регрессионную статистику. Если аргумент статистика имеет значение ЛОЖЬ, 0 или опущена, то функция ЛИНЕЙН возвращает только коэффициенты и свободный член.

Дополнительная регрессионая статистика:

se1,se2,...,sen - стандартные значения ошибок для коэффициентов b1,b2,...,bn.

sea - стандартное значение ошибки для постоянной a (sea = #Н/Д, если конст имеет значение ЛОЖЬ).

r2 - коэффициент детерминированности. Сравниваются фактические значения y и значения, получаемые из уравнения прямой; по результатам сравнения вычисляется коэффициент детерминированности, нормированный от 0 до 1. Если он равен 1, то имеет место полная корреляция с моделью, т.е. нет различия между фактическим и оценочным значениями y. В противоположном случае, если коэффициент детерминированности равен 0, то уравнение регрессии неудачно для предсказания значений y. Для получения информации о том, как вычисляется r2, см. "Замечания" в конце данного раздела.

sey - стандартная ошибка для оценки y.

F-статистика, или F-наблюдаемое значение. F-статистика используется для определения того, является ли наблюдаемая взаимосвязь между зависимой и независимой переменными случайной или нет.

df - степени свободы. Степени свободы полезны для нахождения F-критических значений в статистической таблице. Для определения уровня надежности модели нужно сравнить значения в таблице с F-статистикой, возвращаемой функцией ЛИНЕЙН.

ssreg - регрессионая сумма квадратов.

ssresid - остаточная сумма квадратов.

На приведенном ниже рисунке показано, в каком порядке возвращается дополнительная регрессионная статистика.

Замечания

Выборочную информацию из функции можно получить через функцию ИHДЕКС, например:

Y-пересечение (свободный член):

ИНДЕКС(ЛИНЕЙН(y;x);2)

Точность аппроксимации с помощью прямой, вычисленной функцией ЛИНЕЙН, зависит от степени разброса данных. Чем ближе данные к прямой, тем более точной является модель, используемая функцией ЛИНЕЙН. Функция ЛИНЕЙН использует метод наименьших квадратов для определения наилучшей аппроксимации данных.

Проводя регрессионный анализ, Microsoft Excel вычисляет для каждой точки квадрат разности между прогнозируемым значением y и фактическим значением y. Сумма этих квадратов разностей называется остаточной суммой квадратов. Затем Microsoft Excel подсчитывает сумму квадратов разностей между фактическими значениями y и средним значением y, которая называется общей суммой квадратов (регрессионая сумма квадратов + остаточная сумма квадратов). Чем меньше остаточная сумма квадратов по сравнению с общей суммой квадратов, тем больше значение коэффициента детерминированности r2, который показывает, насколько хорошо уравнение, полученное с помощью регрессионного анализа, объясняет взаимосвязи между переменными.

Заметьте, что значения y, предсказанные с помощью уравнения регрессии, возможно не будут правильными, если они располагаются вне интервала значений y, которые использовались для определения уравнения.

Пример 1 Наклон и Y-пересечение

ЛИНЕЙН({1;9;5;7};{0;4;2;3}) равняется {2;1}, наклон = 2 и y-пересечение = 1.

Использование статистик F и R2

Можно использовать F-статистику, чтобы определить, является ли результат с высоким значение r2 случайным. Если F-наблюдаемое больше, чем F-критическое, то взаимосвязь между переменными имеется. F-критическое можно получить из таблицы F-критических значений в любом справочнике по математической статистике. Для того, чтобы найти это значение, используя односторонний тест, положим величину Альфа (величина Альфа используется для обозначения вероятности ошибочного вывода о том, что имеется сильная взаимозависимость) равной 0,05, а для числа степеней свободы (обозначаемых обычно v1 и v2), положим v1 = k = 4 и v2 = n - (k + 1) = 11 - (4 + 1) = 6, где k - это число переменных, а n - число точек данных. Из таблицы справочника F-критическое равно 4,53. Наблюдаемое F-значение равно 459,753674 (это значение получено в опущенном нами примере), что заметно больше чем F-критическое значение 4,53. Следовательно, полученное регрессионное уравнение полезно для предсказания искомого результата.

Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических:

Где y x - расчетное значение по уравнению.

Значение средней ошибки аппроксимации до 15% свидетельствует о хорошо подобранной модели уравнения.

По семи территориям Уральского района за 199Х г. известны значения двух признаков.

Требуется:
1. Для характеристики зависимости у от х рассчитать параметры следующих функций:
а) линейной;
б) степенной;
в) показательной;
г) равносторонней гиперболы (так же нужно придумать как предварительно линеаризовать данную модель).
2. Оценить каждую модель через среднюю ошибку аппроксимации А ср и F-критерий Фишера.

Решение проводим при помощь онлайн калькулятора Линейное уравнение регрессии .
а) линейное уравнение регрессии;
Использование графического метода .
Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс - индивидуальные значения факторного признака X.
Совокупность точек результативного и факторного признаков называется полем корреляции .


На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.
Линейное уравнение регрессии имеет вид y = bx + a + ε
Здесь ε - случайная ошибка (отклонение, возмущение).
Причины существования случайной ошибки:
1. Невключение в регрессионную модель значимых объясняющих переменных;
2. Агрегирование переменных. Например, функция суммарного потребления – это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.
3. Неправильное описание структуры модели;
4. Неправильная функциональная спецификация;
5. Ошибки измерения.
Так как отклонения ε i для каждого конкретного наблюдения i – случайны и их значения в выборке неизвестны, то:
1) по наблюдениям x i и y i можно получить только оценки параметров α и β
2) Оценками параметров α и β регрессионной модели являются соответственно величины а и b, которые носят случайный характер, т.к. соответствуют случайной выборке;
Тогда оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид y = bx + a + ε, где e i – наблюдаемые значения (оценки) ошибок ε i , а и b соответственно оценки параметров α и β регрессионной модели, которые следует найти.
Для оценки параметров α и β - используют МНК (метод наименьших квадратов).




Получаем b = -0.35, a = 76.88
Уравнение регрессии:
y = -0.35 x + 76.88

x y x 2 y 2 x y y(x) (y i -y cp) 2 (y-y(x)) 2 |y - y x |:y
45,1 68,8 2034,01 4733,44 3102,88 61,28 119,12 56,61 0,1094
59 61,2 3481 3745,44 3610,8 56,47 10,98 22,4 0,0773
57,2 59,9 3271,84 3588,01 3426,28 57,09 4,06 7,9 0,0469
61,8 56,7 3819,24 3214,89 3504,06 55,5 1,41 1,44 0,0212
58,8 55 3457,44 3025 3234 56,54 8,33 2,36 0,0279
47,2 54,3 2227,84 2948,49 2562,96 60,55 12,86 39,05 0,1151
55,2 49,3 3047,04 2430,49 2721,36 57,78 73,71 71,94 0,172
384,3 405,2 21338,41 23685,76 22162,34 405,2 230,47 201,71 0,5699

Примечание: значения y(x) находятся из полученного уравнения регрессии:
y(45.1) = -0.35*45.1 + 76.88 = 61.28
y(59) = -0.35*59 + 76.88 = 56.47
... ... ...

Ошибка аппроксимации
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации. Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических:

Поскольку ошибка меньше 15%, то данное уравнение можно использовать в качестве регрессии.

F-статистики. Критерий Фишера.










3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-α) принимается альтернативная гипотеза о статистической значимости уравнения в целом.

< Fkp, то коэффициент детерминации статистически не значим (Найденная оценка уравнения регрессии статистически не надежна).

б) степенная регрессия ;
Решение проводится с помощью сервиса Нелинейная регрессия . При выборе укажите Степенная y = ax b
в) показательная регрессия;
г) модель равносторонней гиперболы.
Система нормальных уравнений.

Для наших данных система уравнений имеет вид
7a + 0.1291b = 405.2
0.1291a + 0.0024b = 7.51
Из первого уравнения выражаем а и подставим во второе уравнение
Получаем b = 1054.67, a = 38.44
Уравнение регрессии:
y = 1054.67 / x + 38.44
Ошибка аппроксимации.
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации.

Поскольку ошибка меньше 15%, то данное уравнение можно использовать в качестве регрессии.

Критерий Фишера.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с k1=(m) и k2=(n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.

где m – число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H 0: R 2 =0 на уровне значимости α.
2. Далее определяют фактическое значение F-критерия:

где m=1 для парной регрессии.
Табличное значение критерия со степенями свободы k1=1 и k2=5, Fkp = 6.61
Поскольку фактическое значение F < Fkp, то коэффициент детерминации статистически не значим (Найденная оценка уравнения регрессии статистически не надежна).

Курсовая работа

по дисциплине «Эконометрика»

«Комплексный анализ взаимосвязи финансово-экономических показателей деятельности предприятий»

Вариант № 12

Выполнил:

студент группы ЭЭТ-312

Логунов Н.Ю.

Проверила:

доц. Ишханян М.В.

Москва 2015

Постановка задачи

1. Составление корреляционной матрицы. Отбор факторов

2. Построение уравнения множественной линейной регрессии. Интерпретация параметров уравнения

3. Коэффициент детерминации, множественный коэффициент корреляции

4.Оценка качества уравнения множественной линейной регрессии

4.1.Средняя относительная ошибка аппроксимации

4.2.Проверка статистической значимости уравнения множественной регрессии в целом с помощью F-критерия Фишера

4.3.Проверка статистической значимости параметров уравнения множественной регрессии. Интервальные оценки параметров

5.Применение регрессионной модели

5.1.Точечный прогноз

5.2.Частные коэффициенты эластичности и средние частные коэффициенты эластичности

6.Анализ остатков регрессионной модели (проверка предпосылок теоремы Гаусса-Маркова)

6.1.Оценки математического ожидания остатков

6.2.Проверка наличия автокорреляции в остатках

7.Критерий Грегори Чоу

Постановка задачи

Заданы значения 6 показателей, характеризующих экономическую деятельность 53 предприятий. Требуется:

1. Составить корреляционную матрицу. Скорректировать набор независимых переменных (отобрать 2 фактора).

4.2. Проверить статистическую значимость уравнения множественной регрессии в целом с помощью F-критерия Фишера. Сделать выводы

4.3. Проверить статистическую значимость параметров уравнения множественной регрессии. Построить интервальные оценки параметров. Сделать выводы.



5. Применение регрессионной модели:

5.1. Используя построенное уравнение, дать точечный прогноз. Найти значение исследуемого параметра y, если значение первого фактора (наиболее тесно связанного с у) составит 110% от его среднего значения, значение второго фактора составит 80% от его среднего значения. Дать экономическую интерпретацию результата.

5.2. Найти частные коэффициенты эластичности и средние частные коэффициенты эластичности. Интерпретировать результаты. Сделать выводы.

6. Провести анализ остатков регрессионной модели (проверить требования теоремы Гаусса-Маркова):

6.1. Найти оценки математического ожидания остатков.

6.2. Проверить наличие автокорреляции в остатках. Сделать вывод.

7. Разделите выборку на две равные части. Рассматривая первые и последние наблюдения как независимые выборки, проверить гипотезу о возможности объединения их в единую выборку по критерию Грегори-Чоу.

Составление корреляционной матрицы. Отбор факторов

№ предприятия Y3 X10 X12 X5 X7 X13
13,26 1,45 167,69 0,78 1,37
10,16 1,3 186,1 0,75 1,49
13,72 1,37 220,45 0,68 1,44
12,85 1,65 169,3 0,7 1,42
10,63 1,91 39,53 0,62 1,35
9,12 1,68 40,41 0,76 1,39
25,83 1,94 102,96 0,73 1,16
23,39 1,89 37,02 0,71 1,27
14,68 1,94 45,74 0,69 1,16
10,05 2,06 40,07 0,73 1,25
13,99 1,96 45,44 0,68 1,13
9,68 1,02 41,08 0,74 1,1
10,03 1,85 136,14 0,66 1,15
9,13 0,88 42,39 0,72 1,23
5,37 0,62 37,39 0,68 1,39
9,86 1,09 101,78 0,77 1,38
12,62 1,6 47,55 0,78 1,35
5,02 1,53 32,61 0,78 1,42
21,18 1,4 103,25 0,81 1,37
25,17 2,22 38,95 0,79 1,41
19,4 1,32 81,32 0,77 1,35
1,48 67,26 0,78 1,48
6,57 0,68 59,92 0,72 1,24
14,19 2,3 107,34 0,79 1,40
15,81 1,37 512,6 0,77 1,45
5,23 1,51 53,81 0,8 1,4
7,99 1,43 80,83 0,71 1,28
17,5 1,82 59,42 0,79 1,33
17,16 2,62 36,96 0,76 1,22
14,54 1,75 91,43 0,78 1,28
6,24 1,54 17,16 0,62 1,47
12,08 2,25 27,29 0,75 1,27
9,49 1,07 184,33 0,71 1,51
9,28 1,44 58,42 0,74 1,46
11,42 1,4 59,4 0,65 1,27
10,31 1,31 49,63 0,66 1,43
8,65 1,12 391,27 0,84 1,5
10,94 1,16 258,62 0,74 1,35
9,87 0,88 75,66 0,75 1,41
6,14 1,07 123,68 0,75 1,47
12,93 1,24 37,21 0,79 1,35
9,78 1,49 53,37 0,72 1,4
13,22 2,03 32,87 0,7 1,2
17,29 1,84 45,63 0,66 1,15
7,11 1,22 48,41 0,69 1,09
22,49 1,72 13,58 0,71 1,26
12,14 1,75 63,99 0,73 1,36
15,25 1,46 104,55 0,65 1,15
31,34 1,6 222,11 0,82 1,87
11,56 1,47 25,76 0,8 1,17
30,14 1,38 29,52 0,83 1,61
19,71 1,41 41,99 0,7 1,34
23,56 1,39 78,11 0,74 1,22

1.Составить корреляционную матрицу. Скорректировать набор независимых переменных (отобрать 2 фактора).

Рассмотрим результативный признак Y3 и факторные признаки Х10, X12, Х5, Х7, Х13 .

Составим корреляционную матрицу с помощью опции «Анализ данных→Корреляция» в MS Excel:

Y3 X10 X12 X5 X7 X13
Y3 1,0000 0,3653 0,0185 0,2891 0,1736 0,0828
X10 0,3653 1,0000 -0,2198 -0,0166 -0,2061 -0,0627
X12 0,0185 -0,2198 1,0000 0,2392 0,3796 0,6308
X5 0,2891 -0,0166 0,2392 1,0000 0,4147 0,0883
X7 0,1736 -0,2061 0,3796 0,4147 1,0000 0,1939
X13 0,0828 -0,0627 0,6308 0,0883 0,1939 1,0000

Отбираем 2 фактора по критериям:

1) связь Y и X должна быть максимальной

2) связь между Xми должна быть наименьшей

Таким образом, в следующих пунктах работа будет производиться с факторами X10 , X5.

Построение уравнения множественной линейной регрессии. Интерпретация параметров уравнения.

2. Построить уравнение множественной линейной регрессии. Дать интерпретацию параметров уравнения.

Составим регрессионную модель с помощью пакета анализа «Анализ данных→Регрессия» в MS Excel:

Коэффициенты
Y -20,7163
X 10 5,7169
X 5 34,9321

Уравнение регрессии будет выглядеть следующим образом:

ŷ = b 0 + b 10 * x 10 + b 5 * x 5

ŷ = -20,7163-5,7169* x 10 +34,9321* x 5

1) b10 положительный;

2) b5 положительный;

Коэффициент детерминации, множественный коэффициент корреляции

3. Найти коэффициент детерминации, множественный коэффициент корреляции. Сделать выводы.

В регрессионном анализе, выполненном с помощью пакета анализа «Анализ данных→Регрессия» в MS Excel, найдём таблицу «Регрессионная статистика»:

Множественный R-связь между Y3 и X10,X5 слабая

R-квадрат-22,05% вариации признака Y объясняется вариацией признаков X10 и X5

Оценка качества уравнения множественной линейной регрессии

4. Оценить качество уравнения множественной линейной регрессии:

Средняя относительная ошибка аппроксимации

4.1. Найти среднюю относительную ошибку аппроксимации. Сделать выводы.

Рассчитаем прогнозные значения для каждого наблюдения или воспользуемся столбцом «Предсказанное У» в таблице «Вывод остатка» в регрессионном анализе, выполненном с помощью пакета анализа «Анализ данных→Регрессия» в MS Excel)

Вычислим относительные ошибки для каждого наблюдения по формуле:

Вычислим среднюю относительную ошибку аппроксимации по формуле:

Вывод: 20% < А < 50%, качество уравнения среднее (удовлетворительное).

Среди различных методов прогнозирования нельзя не выделить аппроксимацию. С её помощью можно производить приблизительные подсчеты и вычислять планируемые показатели, путем замены исходных объектов на более простые. В Экселе тоже существует возможность использования данного метода для прогнозирования и анализа. Давайте рассмотрим, как этот метод можно применить в указанной программе встроенными инструментами.

Наименование данного метода происходит от латинского слова proxima – «ближайшая» Именно приближение путем упрощения и сглаживания известных показателей, выстраивание их в тенденцию и является его основой. Но данный метод можно использовать не только для прогнозирования, но и для исследования уже имеющихся результатов. Ведь аппроксимация является, по сути, упрощением исходных данных, а упрощенный вариант исследовать легче.

Главный инструмент, с помощью которого проводится сглаживания в Excel – это построение линии тренда. Суть состоит в том, что на основе уже имеющихся показателей достраивается график функции на будущие периоды. Основное предназначение линии тренда, как не трудно догадаться, это составление прогнозов или выявление общей тенденции.

Но она может быть построена с применением одного из пяти видов аппроксимации:

  • Линейной;
  • Экспоненциальной;
  • Логарифмической;
  • Полиномиальной;
  • Степенной.

Рассмотрим каждый из вариантов более подробно в отдельности.

Способ 1: линейное сглаживание

Прежде всего, давайте рассмотрим самый простой вариант аппроксимации, а именно с помощью линейной функции. На нем мы остановимся подробнее всего, так как изложим общие моменты характерные и для других способов, а именно построение графика и некоторые другие нюансы, на которых при рассмотрении последующих вариантов уже останавливаться не будем.

Прежде всего, построим график, на основании которого будем проводить процедуру сглаживания. Для построения графика возьмем таблицу, в которой помесячно указана себестоимость единицы продукции, производимой предприятием, и соответствующая прибыль в данном периоде. Графическая функция, которую мы построим, будет отображать зависимость увеличения прибыли от уменьшения себестоимости продукции.


Сглаживание, которое используется в данном случае, описывается следующей формулой:

В конкретно нашем случае формула принимает такой вид:

y=-0,1156x+72,255

Величина достоверности аппроксимации у нас равна 0,9418 , что является довольно приемлемым итогом, характеризующим сглаживание, как достоверное.

Способ 2: экспоненциальная аппроксимация

Теперь давайте рассмотрим экспоненциальный тип аппроксимации в Эксель.


Общий вид функции сглаживания при этом такой:

где e – это основание натурального логарифма.

В конкретно нашем случае формула приняла следующую форму:

y=6282,7*e^(-0,012*x)

Способ 3: логарифмическое сглаживание

Теперь настала очередь рассмотреть метод логарифмической аппроксимации.


В общем виде формула сглаживания выглядит так:

где ln – это величина натурального логарифма. Отсюда и наименование метода.

В нашем случае формула принимает следующий вид:

y=-62,81ln(x)+404,96

Способ 4: полиномиальное сглаживание

Настал черед рассмотреть метод полиномиального сглаживания.


Формула, которая описывает данный тип сглаживания, приняла следующий вид:

y=8E-08x^6-0,0003x^5+0,3725x^4-269,33x^3+109525x^2-2E+07x+2E+09

Способ 5: степенное сглаживание

В завершении рассмотрим метод степенной аппроксимации в Excel.


Данный способ эффективно используется в случаях интенсивного изменения данных функции. Важно учесть, что этот вариант применим только при условии, что функция и аргумент не принимают отрицательных или нулевых значений.

Общая формула, описывающая данный метод имеет такой вид:

В конкретно нашем случае она выглядит так:

y = 6E+18x^(-6,512)

Как видим, при использовании конкретных данных, которые мы применяли для примера, наибольший уровень достоверности показал метод полиномиальной аппроксимации с полиномом в шестой степени (0,9844 ), наименьший уровень достоверности у линейного метода (0,9418 ). Но это совсем не значит, что такая же тенденция будет при использовании других примеров. Нет, уровень эффективности у приведенных выше методов может значительно отличаться, в зависимости от конкретного вида функции, для которой будет строиться линия тренда. Поэтому, если для этой функции выбранный метод наиболее эффективен, то это совсем не означает, что он также будет оптимальным и в другой ситуации.

Если вы пока не можете сразу определить, основываясь на вышеприведенных рекомендациях, какой вид аппроксимации подойдет конкретно в вашем случае, то есть смысл попробовать все методы. После построения линии тренда и просмотра её уровня достоверности можно будет выбрать оптимальный вариант.

Для общей оценки качества построенной эконометрической определяются такие характеристики как коэффициент детерминации, индекс корреляции, средняя относительная ошибка аппроксимации, а также проверяется значимость уравнения регрессии с помощью F -критерия Фишера. Перечисленные характеристики являются достаточно универсальными и могут применяться как для линейных, так и для нелинейных моделей, а также моделей с двумя и более факторными переменными. Определяющее значение при вычислении всех перечисленных характеристик качества играет ряд остатков ε i , который вычисляется путем вычитания из фактических (полученных по наблюдениям) значений исследуемого признака y i значений, рассчитанных по уравнению модели y рi .

Коэффициент детерминации

показывает, какая доля изменения исследуемого признака учтена в модели. Другими словами коэффициент детерминации показывает, какая часть изменения исследуемой переменной может быть вычислена, исходя из изменений включённых в модель факторных переменных с помощью выбранного типа функции, связывающей факторные переменные и исследуемый признак в уравнении модели.

Коэффициент детерминации R 2 может принимать значения от 0 до 1. Чем ближе коэффициент детерминации R 2 к единице, тем лучше качество модели.

Индекс корреляции можно легко вычислить, зная коэффициент детерминации:

Индекс корреляции R характеризует тесноту выбранного при построении модели типа связи между учтёнными в модели факторами и исследуемой переменной. В случае линейной парной регрессии его значение по абсолютной величине совпадает с коэффициентом парной корреляции r (x, y) , который мы рассмотрели ранее, и характеризует тесноту линейной связи между x и y . Значения индекса корреляции, очевидно, также лежат в интервале от 0 до 1. Чем ближе величина R к единице, тем теснее выбранный вид функции связывает между собой факторные переменные и исследуемый признак, тем лучше качество модели.

(2.11)

выражается в процентах и характеризует точность модели. Приемлимая точность модели при решении практических задач может определяться, исходя из соображений экономической целесообразности с учётом конкретной ситуации. Широко применяется критерий, в соответствии с которым точность считается удовлетворительной, если средняя относительная погрешность меньше 15%. Если E отн.ср. меньше 5%, то говорят, что модель имеет высокую точность. Не рекомендуется применять для анализа и прогноза модели с неудовлетворительной точностью, то есть, когда E отн.ср. больше 15%.

F-критерий Фишера используется для оценки значимости уравнения регрессии. Расчётное значение F-критерия определяется из соотношения:

. (2.12)

Критическое значение F -критерия определяется по таблицам при заданном уровне значимости α и степенях свободы (можно использовать функцию FРАСПОБР в Excel). Здесь, по-прежнему, m – число факторов, учтённых в модели, n – количество наблюдений. Если расчётное значение больше критического, то уравнение модели признаётся значимым. Чем больше расчётное значение F -критерия, тем лучше качество модели.

Определим характеристики качества построенной нами линейной модели для Примера 1 . Воспользуемся данными Таблицы 2. Коэффициент детерминации :

Следовательно, в рамках линейной модели изменение объёма продаж на 90,1% объясняется изменением температуры воздуха.

Индекс корреляции

.

Значение индекса корреляции в случае парной линейной модели как мы видим, действительно по модулю равно коэффициенту корреляции между соответствующими переменными (объём продаж и температура). Поскольку полученное значение достаточно близко к единице, то можно сделать вывод о наличии тесной линейной связи между исследуемой переменной (объём продаж) и факторной переменноё (температура).

F-критерий Фишера

Критическое значение F кр при α = 0,1; ν 1 =1; ν 2 =7-1-1=5 равно 4,06. Расчётное значение F -критерия больше табличного, следовательно, уравнение модели является значимым.

Средняя относительная ошибка аппроксимации

Построенная линейная модель парной регрессии имеет неудовлетворительную точность (>15%), и её не рекомендуется использовать для анализа и прогнозирования.

В итоге, несмотря на то, что большинство статистических характеристик удовлетворяют предъявляемым к ним критериям, линейная модель парной регрессии непригодна для прогнозирования объёма продаж в зависимости от температуры воздуха. Нелинейный характер зависимости между указанными переменными по данным наблюдений достаточно хорошо виден на Рис.1. Проведённый анализ это подтвердил.