Модели систем массового обслуживания. Понятие о системах массового обслуживания (СМО)

ТЕОРИЯ МАССОВОГО ОБСЛУЖИВАНИЯ

Введение

Теория массового обслуживания является важным разделом системного анализа и исследования операций. Она богата разнообразными приложениями: от задач. связанных с эксплуатацией телефонных сетей, до научной организации производства. Эта теория используется там, где имеются вызовы и клиенты, сигналы и изделия массового производства, а также там, где изделия обслуживаются, обрабатываются, передаются.

Идеи и методы теории массового обслуживания (ТМО) получают всё большее распространение. Многие задачи техники, экономики, военного дела, естествознания могут быть поставлены и решены в терминах ТМО.

Своим возникновением ТМО обязана, в первую очередь, прикладным вопросам телефонии, в которых из-за большого числа независимых или слабо зависимых источников (абонентов телефонных станций) потоки заявок (вызовов) имеют четко выраженный случайный характер. Случайные колебания (флуктуации) около некоторого среднего являются в данном случае не результатом какого-то отклонения от нормы, а закономерностью, свойственной всему процессу. С другой стороны, стабильность работы телефонных станций, возможность получения хороших статистических данных создали предпосылки для выявления основных характеристик, свойственных данному процессу обслуживания.

Впервые на это обратил внимание и провёл исследования датчанин А.К. Эрланг. Основные его работы в данной области относятся к 1908 - 1921 годам. С этого времени, интерес к проблемам, выдвинутым Эрлангом, необычайно возрос. В 1927 - 1928 годах появляются работы Молина и Фрайя, позже в 1930 - 1932 годах - интересные работы Поллачека, А.Н. Колмогорова, А.Я. Хинчина.

Нужно сказать, что первые задачи ТМО были достаточно простыми и допускали получение окончательных аналитических зависимостей. О, развитие шло как по линии увеличения сферы приложения ТМО, так и по линии усложнения стоящих перед ней задач. Оказалось, что задачи типа телефонных, возникают в самых разнообразных направлениях исследований: в естествознании. в технике, на транспорте, в военном деле, в организации производства и т.д.

23. Системы массового обслуживания

Во многих областях практической деятельности человека мы сталкиваемся с необходимостью пребывания в состоянии ожидания. Подобные ситуации возникают в очередях в билетных кассах, в крупных аэропор­тах, при ожидании обслуживающим персоналом самолетов разрешения на взлет или посадку, на телефонных станциях в ожидании освобождения линии абонента, в ремонтных цехах в ожидании ремонта станков и обо­рудования, на складах снабженческо-сбытовых организаций в ожидании разгрузки или погрузки транспортных средств. Во всех перечисленных случаях имеем дело с массовостью и обслуживанием. Изучением таких ситуаций занимается теория массового обслуживания.

Теория массового обслуживания – область прикладной математики, занимающаяся анализом процессов в системах производства, обслуживания, управления, в которых однородные события повторяются многократно, например, на предприятиях бытового обслуживания; в системах приема, переработки и передачи информации; автоматических линиях производства и др.

Предметом теории массового обслуживания является установление зависимостей между характером потока заявок, числом каналов обслуживания, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами.

23.1. Понятие смо

В теории систем массового обслуживания (СМО) обслуживаемый объект называют требованием. В общем случае под требованием обычно понимают запрос на удовлетворение некоторой потребности, например, разговор с абонентом, посадка самолета, покупка билета, получение материалов на складе.

Средства, обслуживающие требования, называютсяобслуживающими устройствами иликаналами обслуживания . Например, к ним относятся каналы телефонной связи, посадочные полосы, мастера-ремонтники, би­летные кассиры, погрузочно-разгрузочные точки на базах и складах.

Совокупность однотипных обслуживающих устройств называется системой массового обслуживания . Такими системами могут быть телефонные стан­ции, аэродромы, билетные кассы, ремонтные мастерские, склады и базы снабженческо-сбытовых организаций и т.д.

Основной задачей теории СМО является изучение режима функциони­рования обслуживающей системы и исследование явлений, возникающих в процессе обслуживания. Так, одной из характеристик обслуживающей системы является время пребывания требования в очереди. Очевидно, что это время можно сократить за счет увеличения количества обслужи­вающих устройств. Однако каждое дополнительное устройство требует определенных материальных затрат, при этом увеличивается время без­действия обслуживающего устройства из-за отсутствия требований на обслуживание, что также является негативным явлением. Следовательно, в теории СМО возникают задачи оптимизации: каким образом достичь оп­ределенного уровня обслуживания (максимального сокращения очереди или потерь требований) при минимальных затратах, связанных с просто­ем обслуживающих устройств.

Источник. Источник определяется как устройство или множество, из которого требования поступают в систему для обслуживания. Источник называют бесконечным или конечным в зависимости от того, бесконечное или конечное число требований содержится в нем. Будем всегда предполагать, что источник, генерирующий требования, неисчерпаем. Например, хотя абонентов некоторого телефонного узла конечное число, предполагаем, что они образують бесконечный источник.

Входящий поток. Требования, поступающие из источника на обслуживание, образуют входящий поток. Само требование можно рассматривать как запрос на удовлетворение какой-то потребности. Примеров входящих потоков можно привести множество. Это - поток информации, поступающей на обработку в ЭВМ; поток заявок на АТС; поток клиентов, приходящих в ателье, и больных в поликлинику, поток прибывающих в порт судов; налетающие на объект удара самолеты и ракеты противника и т. д.

Обслуживающая система. Под обслуживающей системой понимают множество технических средств или производственного персонала (различного рода установки, приборы, устройства, тоннели, взлетно-посадочные полосы, линии связи, продавцы, бригады рабочих или служащих, кассиры и т. д.), выполняющих функции обслуживания. Все перечисленное выше, как уже говорилось, объединяется одним названием «канал обслуживания» (обслуживающий прибор). Состав системы определяется количеством каналов (приборов, линий). По количеству каналов системы можно подразделить на одноканальные и многоканальные.

Выходящий поток. Выходящий поток - это поток требований, покидающих систему после обслуживания. Сюда могут входить и требования, которые покинули систему, не пройдя обслуживания.

Входящий поток, функционирование обслуживающей системы как результат обслуживания, выходящий поток подлежат количественному описанию. Для того чтобы проводить математические исследование процесса массового обслуживания, необходимо полно определить систему обслуживания. Обычно это означает:

- задание входящего потока. Здесь имеются в виду как средняя интенсивность поступления требований, так и статистическая модель их поступления (т. е. закон распределения моментов поступления требований в систему);

- задание механизма обслуживания. Это означает указание того, когда обслуживание допустимо, сколько требований может обслуживаться одновременно и как долго длится обслуживание. Последнее свойство обычно характеризуют статистическим распределением длительности обслуживания (закон распределения времени обслуживания);

- задание дисциплины обслуживания. Это означает указание способа, по которому происходит отбор одного требования из очереди (если она есть) на обслуживание. В простейшем варианте дисциплина обслуживания заключается в обслуживании требований в порядке их поступления (справедливый принцип), однако существует и много других возможностей.

Задание системы предполагает также известное описание взаимодействия между отдельными ее частями.

Когда система достаточно полно определена, появляется основание для построения математической модели. Если математическая модель более или менее адекватно отображает реальную систему, то она позволяет получить основные характеристики функционирования системы. Разумеется, модель значительно упрощает практическую ситуацию, но это не умаляет математических методов теории массового обслуживания и положение дел не отличается от положения дел в других областях прикладной математики.

Во многих областях экономики, финансов, производства и быта важную роль играют системы массо-вого обслуживания (СМО), т.е. такие системы, в которых, с одной стороны, возникают массовые запросы (требования) на выполнение каких-либо услуг, а с другой стороны, происходит удовлетворение этих запросов.

В качествепримеров СМО в финансово-экономи-ческой сфере можно привести системы, представляющие собой: банки различных типов, страховые организа-ции, налоговые инспекции, ау-диторские службы, различные системы связи (в том числе те-лефонные станции), погрузочно-разгрузочные комплексы (товарные станции), автозаправочные станции, различные предприятия и организации сферы обслуживания (магазины, предприятия массового питания, справочные бюро, парикмахерские, билетные кассы, пункты по обмену валюты, ремонтные мастерские, больницы).

Такие сис-темы как компьютерные сети, системы сбора, хранения и обра-ботки информации, транспортные системы, автоматизирован-ные производственные участки, поточные линии также могут рассматриваться как своеобразные СМО.

В торговле выполняется множество операций в процессе движе-ния товарной массы из сферы производства в сферу потребления. Такими операциями являются: погрузка и выгрузка товаров, пере-возка, упаковка, фасовка, хранение, выкладка, продажа и т. д. Для торговой деятельности характерны массовое поступление товаров, денег, массовое обслу-живание покупателей и т. п., а также выполнение соответствующих операций, которые носят случайный характер. Все это создает не-равномерность в работе торговых организаций и предприятий, порождает недогрузки, простои и перегрузки. Много времени отни-мают очереди, например, у покупателей в магазинах, водителей ав-томашин на товарных базах, ожидающих разгрузки или погрузки.

В связи с этим возникают задачи анализа работы, например тор-гового отдела, торгового предприятия или секции, для оценки их деятельности, выявления недостатков, резервов и принятия в конеч-ном итоге мер, направленных на увеличение ее эффективности. Кроме того, возникают задачи, связанные с созданием и внедре-нием более экономичных способов выполнения операций в пределах секции, отдела, торгового предприятия, овощной базы, управления торговли и т. п. Следовательно, в организа-ции торговли методы теории массового обслуживания позволяют определить оптимальное количество торговых точек данного профиля, численность про-давцов, частоту завоза товаров и другие параметры.

Другим ха-рактерным примером систем массового обслуживания могут служить склады или базы снабженческо-сбытовых организа-ций, и задача теории массового обслуживания сводится к тому, чтобы установить оптимальное соотношение между числом по-ступающих на базу требований на обслуживание и числом об-служивающих устройств, при котором суммарные расходы на обслуживание и убытки от простоя транспорта были бы мини-мальными. Теория массового обслуживания может найти при-менение и при расчете площади складских помещений, при этом складская площадь рассматривается как обслуживающее устройство, а прибытие транспортных средств под выгрузку - как требование.


Основные характеристики СМО

СМО включаетследующие элементы : источник требований, входящий поток требований, очередь, обслуживающее устройство (канал обслуживания), выходящий поток требований (обслуженных заявок).

Каждая СМО предназначена для обслуживания (выполнения) некоторого потока заявок (требований), поступающих на вход системы, в основном, не регулярно, а в случайные моменты времени. Обслуживание заявок также длится не постоянное, заранее известное время, а случайное время, которое зависит от многих случайных причин. После обслуживания заявки канал освобожден и готов к приему следующей заявки.

Случайный характер потока заявок и времени их обслуживания приводит к не-равномерной загруженности СМО: в некоторые промежутки времени на входе СМО могут скапливаться необслуженные заявки, что приводит к перегрузке СМО, в некоторые же дру-гие интервалы времени при свободных каналах на входе CMО заявок не будет, что приводит к недогрузке СМО, т.е. к про-стаиванию ее каналов. Заявки, скапливающиеся на входе СМО, либо "становятся" в очередь, либо по какой-то причине невоз-можности дальнейшего пребывания в очереди покидают СМО необслуженными.

Схема СМО изображена на рисунке 5.1.

Рисунок 5.1 - Схема системы массового обслуживания

Каждая СМО включает в свою структуру некоторое число обслуживающих устройств, которые называют каналами обслуживания . Роль каналов могут играть различные приборы, лица, выполняющие те или иные операции (кассиры, операторы, продавцы), линии связи, автомашины и т.д.

Каждая СМО в зависимости от своих параметров: характера потока заявок, числа каналов обслуживания и их производи-тельности, а также от правил организации работы обладает определенной эффективностью функционирования (пропускной способностью), позволяющей ей более или менее успешно справляться с потоком заявок.

СМО явля-ется предметом изучения теории массового обслуживания .

Цель теории массового обслуживания — выработка рекомен-даций по рациональному построению СМО, рациональной ор-ганизации их работы и регулированию потока заявок для обес-печения высокой эффективности функционирования СМО.

Для достижения этой цели ставятся задачи теории массового обслуживания, состоящие в установлении зависимостей эффек-тивности функционирования СМО от ее организации (пара-метров).

В качестве характеристик эффективности функционирова-ния СМО можно выбрать три основные группы (обычно средних) показателей:

1. Показатели эффективности использования СМО:

1.1. Абсолютная пропускная способность СМО - среднее число заявок, которое сможет обслужить СМО в единицу времени.

1.2. Относительная пропускная способность СМО - от-ношение среднего числа заявок, обслуживаемых СМО в единицу времени, к среднему числу посту-пивших заявок за это же время.

1.3. Средняя продолжительность периода занятости СМО.

1.4. Коэффициент использования СМО — средняя доля времени, в течение которого СМО занята обслужи-ванием заявок.

2. Показатели качества обслуживания заявок :

2.1. Среднее время ожидания заявки в очереди.

2.2. Среднее время пребывания заявки в СМО.

2.3. Вероятность отказа заявке в обслуживании без ожи-дания.

2.4. Вероятность того, что поступившая заявка немедлен-но будет принята к обслуживанию.

2.5. Закон распределения времени ожидания заявки в очереди.

2.6. Закон распределения времени пребывания заявки в СМО.

2.7. Среднее число заявок, находящихся в очереди.

2.8. Среднее число заявок, находящихся в СМО, и т.п.

3. Показатели эффективности функционирования пары "СМО — потребитель" , где под "потребителем" понимают всю совокупность заявок или некий их источник (например, средний доход, при-носимый СМО в единицу времени, и т.п.).

Случайный характер потока заявок и длительности их об-служивания порождает в СМО случайный процесс . Поскольку моменты времени T i и интервалы времени поступле-ния заявок T , продолжительность операций обслуживания Т обс , про-стоя в очереди T оч , длина очереди l оч — случайные величины, то характеристики состояния систем массового обслуживания носят вероятностный характер. Поэтому для решения задач теории массового обслужива-ния необходимо этот случайный процесс изучить, т.е. постро-ить и проанализировать его математическую модель.

Математическое изучение функционирования СМО значи-тельно упрощается, если протекающий в ней случайный про-цесс является марковским . Чтобы случайный процесс был марковским, необходимо и достаточно, чтобы все потоки событий, под воз-действием которых происходят переходы системы из состояния в состояние, были (простейшими) пуассоновскими .

Простейший поток обладает тремя основными свойствами : ординарности, стационарности и отсутствия последействия.

Ординарность потока означает практическую невозмож-ность одновременного поступления 2-х и более требований. На-пример, достаточно малой является вероятность того, что в магазине самообслуживания одно-временно выйдут из строя несколько кассовых аппаратов.

Стационарным называется поток, для которого математиче-ское ожидание числа требований, поступающих в систему в едини-цу времени (обозначим λ ), не меняется во времени. Таким образом, вероятность поступления в систему определенного количества тре-бований в течение заданного промежутка времени ?T зависит от его величины и не зависит от начала его отсчета на оси времени.

Отсутствие последействия означает, что число требова-ний, поступивших в систему до момента T , не определяет того, сколько требований поступит в систему за время (T + ?T) . Например, если в кассовом аппарате в данный момент произо-шел обрыв кассовой ленты и он устранен кассиром, то это не влияет на воз-можность нового обрыва на данной кассе в следующий момент и тем более на вероятность возникновения обрыва на других кассовых аппаратах.

Для простейшего потока частота поступления требований в систему подчиняется закону Пуассона , т. е. вероятность по-ступления за время T ровно k требований задается формулой

, (5.1)

где λ интенсивность потока заявок , т. е. среднее число заявок, поступающих в СМО в единицу времени,

, (5.2)

где τ — среднее значение интервала времени между двумя со-седними заявками.

Для такого потока заявок время между двумя соседними заяв-ками распределено экспоненциально с плотностью вероятности

Случайное время ожидания в очереди начала обслуживания то-же можно считать распределенным экспоненциально:

, (5.4)

где ν интенсивность движения очереди , т. е. среднее число зая-вок, приходящих на обслуживание в единицу времени,

где Т оч - среднее значение времени ожидания в очереди.

Выходной поток заявок связан с потоком обслуживания в кана-ле, где длительность обслуживания Т обс является случайной величи-ной и подчиняется во многих случаях показательному закону рас-пределения с плотностью

, (5.6)

где μ интенсивность потока обслуживания , т. е. среднее число заявок, обслуживаемых в единицу времени,

. (5.7)

Важной характеристикой СМО, объединяющей показатели λ и μ , является интенсивность нагрузки, которая показывает степень согласования указанных потоков зая-вок:

Перечисленные показатели k, τ, λ, l оч, Т оч, ν, Т обс, μ, ρ, Р k являются наиболее общими для СМО.

Показатели эффективности СМО
  • абсолютная и относительная пропускная способность системы;
  • коэффициенты загрузки и простоя;
  • среднее время полной загрузки системы;
  • среднее время пребывания заявки в системе.
Показатели, характеризующие систему с точки зрения потребителей :
  • P обс – вероятность обслуживания заявки,
  • t сист – время пребывания заявки в системе.
Показатели, характеризующие систему с точки зрения её эксплуатационных свойств :
  • λ b – абсолютная пропускная способность системы (среднее число обслуженных заявок в единицу времени),
  • P обс – относительная пропускная способность системы,
  • k з – коэффициент загрузки системы.
см. также Параметры экономической эффективности СМО

Задача . В вычислительный центр коллективного пользования с тремя ЭВМ поступают заказы от предприятий на вычислительные работы. Если работают все три ЭВМ, то вновь поступающий заказ не принимается, и предприятие вынуждено обратиться в другой вычислительный центр. Среднее время работы с одним заказом составляет 3 ч. Интенсивность потока заявок 0,25 (1/ч). Найти предельные вероятности состояний и показатели эффективности работы вычислительного центра.
Решение. По условию n=3, λ=0,25(1/ч), t об. =3 (ч). Интенсивность потока обслуживаний μ=1/t об. =1/3=0,33. Интенсивность нагрузки ЭВМ по формуле (24) ρ=0,25/0,33=0,75. Найдем предельные вероятности состояний:
по формуле (25) p 0 =(1+0,75+0,75 2 /2!+0,75 3 /3!) -1 =0,476;
по формуле (26) p 1 =0,75∙0,476=0,357; p 2 =(0,75 2 /2!)∙0,476=0,134; p 3 =(0,75 3 /3!)∙0,476=0,033 т.е. в стационарном режиме работы вычислительного центра в среднем 47,6% времени нет ни одной заявки, 35,7% - имеется одна заявка (занята одна ЭВМ), 13,4% - две заявки (две ЭВМ), 3,3% времени - три заявки (заняты три ЭВМ).
Вероятность отказа (когда заняты все три ЭВМ), таким образом, P отк. =p 3 =0,033.
По формуле (28) относительная пропускная способность центра Q = 1-0,033 = 0,967, т.е. в среднем из каждых 100 заявок вычислительный центр обслуживает 96,7 заявок.
По формуле (29) абсолютная пропускная способность центра A= 0,25∙0,967 = 0,242, т.е. в один час в среднем обслуживается 0,242 заявки.
По формуле (30) среднее число занятых ЭВМ k =0,242/0,33 = 0,725, т.е. каждая из трех ЭВМ будет занята обслуживанием заявок в среднем лишь на 72,5/3 =24,2%.
При оценке эффективности работы вычислительного центра необходимо сопоставить доходы от выполнения заявок с потерями от простоя дорогостоящих ЭВМ (с одной стороны, у нас высокая пропускная способность СМО, а с другой стороны - значительный простой каналов обслуживания) и выбрать компромиссное решение.

Задача . В порту имеется один причал для разгрузки судов. Интенсивность потока судов равна 0,4 (судов в сутки). Среднее время разгрузки одного судна составляет 2 суток. Предполагается, что очередь может быть неограниченной длины. Найти показатели эффективности работы причала, а также вероятность того, что ожидают разгрузки не более чем 2 судна.
Решение. Имеем ρ = λ/μ = μt об. =0,4∙2=0,8. Так как ρ = 0,8 < 1, то очередь на разгрузку не может бесконечно возрастать и предельные вероятности существуют. Найдем их.
Вероятность того, что причал свободен, по (33) p 0 = 1 - 0,8 = 0,2, а вероятность того, что он занят, P зан. = 1-0,2 = 0,8. По формуле (34) вероятности того, что у причала находятся 1, 2, 3 судна (т.е. ожидают разгрузки 0, 1, 2 судна), равны p 1 = 0,8(1-0,8) = 0,16; p 2 = 0,8 2 ∙(1-0,8) = 0,128; p 3 = 0,8 3 ∙(1-0,8) = 0,1024.
Вероятность того, что ожидают разгрузку не более чем 2 судна, равна

По формуле (40) среднее число судов, ожидающих разгрузки

а среднее время ожидания разгрузки по формуле (15.42)
(сутки).
По формуле (36) среднее число судов, находящихся у причала, L сист. = 0,8/(1-0,8) = 4 (сутки) (или проще по (37) L сист. = 3,2+0,8 = 4 (сутки), а среднее время пребывания судна у причала по формуле (41) T сист = 4/0,8 = 5 (сутки).
Очевидно, что эффективность разгрузки судов невысокая. Для ее повышения необходимо уменьшение среднего времени разгрузки судна t об либо увеличение числа причалов n .

Задача . В универсаме к узлу расчета поступает поток покупателей с интенсивностью λ = 81 чел. в час. Средняя продолжительность обслуживания контролером-кассиром одного покупателя t об = 2 мин. Определить:
а. Минимальное количество контролеров-кассиров п min , при котором очередь не будет расти до бесконечности, и соответствующие характеристики обслуживания при n=n min .
б. Оптимальное количество n опт. контролеров-кассиров, при котором относительная величина затрат С отн., связанная с издержками на содержание каналов обслуживания и с пребыванием в очереди покупателей, задаваемая, например, как , будет минимальна, и сравнить характеристики обслуживания при n=n min и n=n опт.
в. Вероятность того, что в очереди будет не более трех покупателей.
Решение.
а. По условию l = 81(1/ч) = 81/60 = 1,35 (1/мин.). По формуле (24) r = l/ m = lt об = 1,35×2 = 2,7. Очередь не будет возрастать до бесконечности при условии r/n < 1, т.е. при n > r = 2,7. Таким образом, минимальное количество контролеров-кассиров n min = 3.
Найдем характеристики обслуживания СМО при п = 3.
Вероятность того, что в узле расчета отсутствуют покупатели, по формуле (45) p 0 = (1+2,7+2,7 2 /2!+2,7 3 /3!+2,7 4 /3!(3-2,7)) -1 = 0,025, т.е. в среднем 2,5% времени контролеры-кассиры будут простаивать.
Вероятность того, что в узле расчета будет очередь, по (48) P оч. = (2,7 4 /3!(3-2,7))0,025 = 0,735
Среднее число покупателей, находящихся в очереди, по (50) L оч. = (2,7 4 /3∙3!(1-2,7/3) 2)0,025 = 7,35.
Среднее время ожидания в очереди по (42) T оч. = 7,35/1,35 = 5,44 (мин).
Среднее число покупателей в узле расчета по (51) L сист. = 7,35+2,7 = 10,05.
Среднее время нахождения покупателей в узле расчета по (41) T сист. = 10,05/1,35 = 7,44 (мин).
Таблица 1

Характеристика обслуживания Число контролеров-кассиров
3 4 5 6 7
Вероятность простоя контролеров-кассиров p 0 0,025 0,057 0,065 0,067 0,067
Среднее число покупателей в очереди T оч. 5,44 0,60 0,15 0,03 0,01
Относительная величина затрат С отн. 18,54 4,77 4,14 4,53 5,22
Среднее число контролеров-кассиров, занятых обслуживанием покупателей, по (49) k = 2,7.
Коэффициент (доля) занятых обслуживанием контролеров-кассиров
= ρ/n = 2,7/3 = 0,9.
Абсолютная пропускная способность узла расчета А = 1,35 (1/мин), или 81 (1/ч), т.е. 81 покупатель в час.
Анализ характеристик обслуживания свидетельствует о значительной перегрузке узла расчета при наличии трех контролеров-кассиров.
б. Относительная величина затрат при n = 3
C отн. = = 3/1,35+3∙5,44 = 18,54.
Рассчитаем относительную величину затрат при других значениях п (табл. 1).
Как видно из табл. 2, минимальные затраты получены при n = n опт. = 5 контролерах-кассирах.
Определим характеристики обслуживания узла расчета при n = n опт. =5. Получим P оч. = 0,091; L оч. = 0,198; Т оч. = 0,146 (мин); L сист. = 2,90; T снст. = 2,15 (мин); k = 2,7; k 3 = 0,54.
Как видим, при n = 5 по сравнению с n = 3 существенно уменьшились вероятность возникновения очереди P оч. , длина очереди L оч. и среднее время пребывания в очереди T оч. и соответственно среднее число покупателей L сист. и среднее время нахождения в узле расчета T сист., а также доля занятых обслуживанием контролеров k 3. Но среднее число занятых обслуживанием контролеров-кассиров k и абсолютная пропускная способность узла расчета А естественно не изменились.
в. Вероятность того, что в очереди будет не более 3 покупателей, определится как
= 1- P оч. + p 5+1 + p 5+2 + p 5+3 , где каждое слагаемое найдем по формулам (45) – (48). Получим при n=5:

(Заметим, что в случае n=3 контролеров-кассиров та же вероятность существенно меньше: P(r ≤ 3) =0,464).

При исследовании операций часто приходится сталкиваться с системами, предназначенными для многоразового использования при решении однотипных задач. Возникающие при этом процессы получили название процессов обслуживания , а системы - систем массового обслуживания (СМО) . Примерами таких систем являются телефонные системы, ремонтные мастерские, вычислительные комплексы, билетные кассы, магазины, парикмахерские и т.п.


Каждая СМО состоит из определенного числа обслуживающих единиц (приборов, устройств, пунктов, станций), которые будем называть каналами обслуживания . Каналами могут быть линии связи, рабочие точки, вычислительные машины, продавцы и др. По числу каналов СМО подразделяют на одноканальные и многоканальные .


Заявки поступают в СМО обычно не регулярно, а случайно, образуя так называемый случайный поток заявок (требований) . Обслуживание заявок, вообще говоря, также продолжается какое-то случайное время. Случайный характер потока заявок и времени обслуживания приводит к тому, что СМО оказывается загруженной неравномерно: в какие-то периоды времени скапливается очень большое количество заявок (они либо становятся в очередь, либо покидают СМО необслуженными), в другие же периоды СМО работает с недогрузкой или простаивает.


Предметом теории массового обслуживания является построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, характер потока заявок и т.п.) с показателями эффективности СМО, описывающими ее способность справляться с потоком заявок.


В качестве показателей эффективности СМО используются: среднее число заявок, обслуживаемых в единицу времени; среднее число заявок в очереди; среднее время ожидания обслуживания; вероятность отказа в обслуживании без ожидания; вероятность того, что число заявок в очереди превысит определенное значение и т.п.


СМО делят на два основных типа (класса): СМО с отказами и СМО с ожиданием (очередью) . В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем процессе обслуживания не участвует (например, заявка на телефонный разговор в момент, когда все каналы заняты, получает отказ и покидает СМО необслуженной). В СМО с ожиданием заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь на обслуживание.


СМО с ожиданием подразделяются на разные виды в зависимости от того, как организована очередь: с ограниченной или неограниченной длиной очереди, с ограниченным временем ожидания и т.п.


Для классификации СМО важное значение имеет дисциплина обслуживания , определяющая порядок выбора заявок из числа поступивших и порядок распределения их между свободными каналами. По этому признаку обслуживание заявки может быть организовано по принципу "первая пришла - первая обслужена", "последняя пришла - первая обслужена" (такой порядок может применяться, например, при извлечении для обслуживания изделий со склада, ибо последние из них оказываются часто более доступными) или обслуживание с приоритетом (когда в первую очередь обслуживаются наиболее важные заявки). Приоритет может быть как абсолютным , когда более важная заявка"вытесняет" из-под обслуживания обычную заявку (например, в случае аварийной ситуации плановые работы ремонтных бригад прерываются до ликвидации аварии), так и относительным , когда более важная заявка получает лишь "лучшее" место в очереди.

Понятие марковского случайного процесса

Процесс работы СМО представляет собой случайный процесс .


Под случайным (вероятностным или стохастическим) процессом понимается процесс изменения во времени состояния какой-либо системы в соответствии с вероятностными закономерностями.


Процесс называется процессом с дискретными состояниями , если его возможные состояния можно заранее перечислить, а переход системы из состояния в состояние происходит мгновенно (скачком). Процесс называется процессом с непрерывным временем , если моменты возможных переходов системы из состояния в состояние не фиксированы заранее, а случайны.


Процесс работы СМО представляет собой случайный процесс с дискретными состояниями и непрерывным временем. Это означает, что состояние СМО меняется скачком в случайные моменты появления каких-то событий (например, прихода новой заявки, окончания обслуживания и т.п.).


Математический анализ работы СМО существенно упрощается, если процесс этой работы - марковский. Случайный процесс называется марковским или случайным процессом без последствия , если для любого момента времени вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент и не зависят от того, когда и как система пришла в это состояние.


Пример марковского процесса: система - счетчик в такси. Состояние системы в момент характеризуется числом километров (десятых долей километров), пройденных автомобилем до данного момента. Пусть в момент счетчик показывает . Вероятность того, что в момент счетчик покажет то или иное число километров (точнее, соответствующее число рублей) , зависит от , но не зависит от того, в какие моменты времени изменялись показания счетчика до момента .


Многие процессы можно приближенно считать марковскими. Например, процесс игры в шахматы; система - группа шахматных фигур. Состояние системы характеризуется числом фигур противника, сохранившихся на доске в момент . Вероятность того, что в момент материальный перевес будет на стороне одного из противников, зависит в первую очередь от того, в каком состоянии находится система в данный момент , а не от того, когда и в какой последовательности исчезли фигуры с доски до момента .


В ряде случаев предысторией рассматриваемых процессов можно просто пренебречь и применять для их изучения марковские модели.


При анализе случайных процессов с дискретными состояниями удобно пользоваться геометрической схемой - так называемым графом состояний . Обычно состояния системы изображаются прямоугольниками (кружками), а возможные переходы из состояния в состояние - стрелками (ориентированными дугами), соединяющими состояния.

Пример 1. Построить граф состояний следующего случайного процесса: устройство состоит из двух узлов, каждый из которых в случайный момент времени может выйти из строя, после чего мгновенно начинаете» ремонт узла, продолжающийся заранее неизвестное случайное время.


Решение. Возможные состояния системы: - оба узла исправны; - первый узел ремонтируется, второй исправен; - второй узел ремонтируется, первый исправен; - оба узла ремонтируются. Граф системы приведен на рис. 1.



Стрелка, направленная, например, из в , означает переход системы в момент отказа первого узла, из в - переход в момент окончания ремонта этого узла.


На графе отсутствуют стрелки из в и из в . Это объясняется тем, что выходы узлов из строя предполагаются независимыми друг от друга и, например, вероятностью одновременного выхода из строя двух узлов (переход из в ) или одновременного окончания ремонтов двух узлов (переход из в ) можно пренебречь.


Для математического описания марковского случайного процесса с дискретными состояниями и непрерывным временем, протекающего в СМО, познакомимся с одним из важных понятий теории вероятностей - понятием потока событий.

Потоки событий

Под потоком событий понимается последовательность однородных событий, следующих одно за другим в какие-то случайные моменты времени (например, поток вызовов на телефонной станции, поток отказов ЭВМ, поток покупателей и т.п.).


Поток характеризуется интенсивностью - частотой появления событий или средним числом событий, поступающих в СМО в единицу времени.


Поток событий называется регулярным , если события следуют одно за другим через определенные равные промежутки времени. Например, поток изделий на конвейере сборочного цеха (с постоянной скоростью движения) является регулярным.


Поток событий называется стационарным , если его вероятностные характеристики не зависят от времени. В частности, интенсивность стационарного потока есть величина постоянная: . Например, поток автомобилей на городском проспекте не является стационарным в течение суток, но этот поток можно считать стационарным в течение суток, скажем, в часы пик. Обращаем внимание на то, что в последнем случае фактическое число проходящих автомобилей в единицу времени (например, в каждую минуту) может заметно отличаться друг от друга, но среднее их число будет постоянно и не будет зависеть от времени.


Поток событий называется потоком без последействия , если для любых двух непересекающихся участков времени и - число событий, попадающих на один из них, не зависит от числа событий, попадающих на другие. Например, поток пассажиров, входящих в метро, практически не имеет последействия. А, скажем, поток покупателей, отходящих с покупками от прилавка, уже имеет последействие (хотя бы потому, что интервал времени между отдельными покупателями не может быть меньше, чем минимальное время обслуживания каждого из них).


Поток событий называется ординарным , если вероятность попадания на малый (элементарный) участок времени двух и более событий пренебрежимо мала по сравнению с вероятностью попадания одного события. Другими словами, поток событий ординарен, если события появляются в нем поодиночке, а не группами. Например, поток поездов, подходящих к станции, ординарен, а поток вагонов не ординарен.


Поток событий называется простейшим (или стационарным пуассоновским ), если он одновременно стационарен, ординарен и не имеет последействия. Название "простейший" объясняется тем, что СМО с простейшими потоками имеет наиболее простое математическое описание. Заметим, что регулярный поток не является "простейшим", так как он обладает последействием: моменты появления событий в таком потоке жестко зафиксированы.


Простейший поток в качестве предельного возникает в теории случайных процессов столь же естественно, как в теории вероятностей нормальное распределение получается в качестве предельного для суммы случайных величин: при наложении (суперпозиции) достаточно большого числа независимых, стационарных и ординарных потоков (сравнимых между собой по интенсивностям получается поток, близкий к простейшему с интенсивностью , равной сумме интенсивностей входящих потоков, т.е. . Рассмотрим на оси времени (рис. 1) простейший поток событий как неограниченную последовательность случайных точек.



Можно показать, что для простейшего потока число т событий (точек), попадающих на произвольный участок времени , распределено по закону Пуассона



для которого математическое ожидание случайной величины равно ее дисперсии: .


В частности, вероятность того, что за время не произойдет ни одного события , равна



Найдем распределение интервала времени между произвольными двумя соседними событиями простейшего потока.


В соответствии с (2) вероятность того, что на участке времени длиной не появится ни одного из последующих событий, равна



а вероятность противоположного события, т.е. функция распределения случайной величины , есть



Плотность вероятности случайной величины есть производная ее функции распределения (рис. 3), т.е.



Распределение, задаваемое плотностью вероятности (5) или функцией распределения (4), называется показательным (или экспоненциальным ). Таким образом, интервал времени между двумя соседними произвольными событиями имеет показательное распределение, для которого математическое ожидание равно среднему квадратическому отклонению случайной величины


и обратно по величине интенсивности потока .


Важнейшее свойство показательного распределения (присущее только показательному распределению) состоит в следующем: если промежуток времени, распределенный по показательному закону, уже длился некоторое время , то это никак не влияет на закон распределения оставшейся части промежутка : он будет таким же, как и закон распределения всего промежутка .


Другими словами, для интервала времени между двумя последовательными соседними событиями потока, имеющего показательное распределение, любые сведения о том, сколько времени протекал этот интервал, не влияют на закон распределения оставшейся части. Это свойство показательного закона представляет собой, в сущности, другую формулировку для "отсутствия последействия" - основного свойства простейшего потока.


Для простейшего потока с интенсивностью вероятность попадания на

(Заметим, что эта приближенная формула, получаемая заменой функции лишь двумя первыми членами ее разложения в ряд по степеням , тем точнее, чем меньше ).

Теория СМО посвящена разработке методов анализа, проектирования и рациональной организации систем, относящихся к различным областям деятельности, таким как связь, вычислительная техника, торговля, транспорт, военное дело. Несмотря на все свое разнообразие, приведенные системы обладают рядом типичных свойств, а именно.

  • СМО (системы массового обслуживания) - это модели систем , в которые в случайные моменты времени извне или изнутри поступают заявки (требования). Они должны тем или иным образом быть обслужены системой. Длительность обслуживания чаще всего случайна.
  • СМО представляет собой совокупность обслуживающего оборудования и персонала при соответствующей организации процесса обслуживания.
  • Задать СМО – это значит задать ее структуру и статистические характеристики последовательности поступления заявок и последовательности их обслуживания.
Задача анализа СМО заключается в определении ряда показателей ее эффективности, которые можно разделить на следующие группы:
  • показатели, характеризующие систему в целом: число n занятых каналов обслуживания, число обслуженных (λ b ), ожидающих обслуживание или получивших отказ заявок (λ c ) в единицу времени и т.д.;
  • вероятностные характеристики : вероятность того, что заявка будет обслужена (P обс) или получит отказ в обслуживании (P отк), что все приборы свободны (p 0) или определенное число их занято (p k ), вероятность наличия очереди и т.д.;
  • экономические показатели : стоимость потерь, связанных с уходом не обслуженной по тем или иным причинам заявки из системы, экономический эффект, полученный в результате обслуживания заявки, и т.д.
Часть технических показателей (первые две группы) характеризуют систему с точки зрения потребителей , другая часть – характеризует систему с точки зрения её эксплуатационных свойств . Часто выбор перечисленных показателей, может улучшать эксплуатационные свойства системы, но ухудшать систему с точки зрения потребителей и наоборот. Использование экономических показателей позволяет разрешить указанное противоречие и оптимизировать систему с учетом обеих точек зрения.
В ходе выполнения домашней контрольной работы изучаются простейшие СМО. Это системы разомкнутого типа, бесконечный источник заявок в систему не входит. Входной поток заявок, потоки обслуживания и ожидания этих систем являются простейшими. Приоритеты отсутствуют. Системы однофазные.

Многоканальная система с отказами

Система состоит из одного узла обслуживания, содержащего n каналов обслуживания, каждый из которых может обслуживать только одну заявку.
Все каналы обслуживания одинаковой производительности и для модели системы неразличимы. Если заявка поступила в систему и застала хотя бы один канал свободным, она мгновенно начинает обслуживаться. Если в момент поступления заявки в систему все каналы заняты, то заявка покидает систему не обслуженной.

Смешанные системы

  1. Система с ограничением на длину очереди .
    Состоит из накопителя (очереди) и узла обслуживания. Заявка покидает очередь и уходит из системы, если в накопителе к моменту ее появления уже находятся m заявок (m – максимально возможноечисло мест в очереди). Если заявка поступила в систему и застала, хотя бы один канал свободным, она мгновенно начинает обслуживаться. Если в момент поступления заявки в систему все каналы заняты, то заявка не покидает систему, а занимает место в очереди. Заявка покидает систему не обслуженной, если к моменту её поступления в систему заняты все каналы обслуживания и все места в очереди.
    Для каждой системы определяется дисциплина очереди. Это система правил, определяющих порядок поступления заявок из очереди в узел обслуживания. Если все заявки и каналы обслуживания равнозначны, то чаще всего действует правило «кто раньше пришел, тот раньше обслуживается».
  2. Система с ограничением на длительность пребывания заявки в очереди .
    Состоит из накопителя (очереди) и узла обслуживания. От предыдущей системы она отличается тем, что заявка, поступившая в накопитель (очередь), может ожидать начала обслуживания лишь ограниченное время Т ож (чаще всего это случайная величина). Если её время Т ож истекло, то заявка покидает очередь и уходит из системы не обслуженной.

Математическое описание СМО

СМО рассматриваются как некоторые физические системы с дискретными состояниями х 0 , х 1 , …, х n , функционирующие при непрерывном времени t . Число состояний n может быть конечным или счетным (n → ∞). Система может переходить из одного состояния х i (i= 1, 2, … , n) в другое х j (j= 0, 1, … ,n) в произвольный момент времени t . Чтобы показать правила таких переходов, используют схему, называемую графом состояний . Для типов перечисленных выше систем графы состояний образуют цепь, в которой каждое состояние (кроме крайних) связано прямой и обратной связью с двумя соседними состояниями. Это схема гибели и размножения.
Переходы из состояния в состояние происходят в случайные моменты времени. Удобно считать, что эти переходы происходят в результате действия каких-то потоков (потоков входных заявок, отказов в обслуживании заявок, потока восстановления приборов и т.д.). Если все потоки простейшие, то протекающий в системе случайный процесс с дискретным состоянием и непрерывным временем будет марковским.
Поток событий - это последовательность однотипных событий, протекающих в случайные моменты времени. Его можно рассматривать как последовательность случайных моментов времени t 1 , t 2 , … появления событий.
Простейшим называют поток, обладающий следующими свойствами:
  • Ординарность . События следуют по одиночке (противоположность потоку, где события следуют группами).
  • Стационарность . Вероятность попадания заданного числа событий на интервал времени Т зависит только от длины интервала и не зависит от того, где на оси времени находиться этот интервал.
  • Отсутствие последействия . Для двух непересекающихся интервалов времени τ 1 и τ 2 число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой интервал.
В простейшем потоке интервалы времени Т 1 , Т 2 ,… между моментами t 1 , t 2 , … появления событий случайны, независимы между собой и имеют показательное распределение вероятностей f(t)=λe -λt , t≥0, λ=const, где λ - параметр показательного распределения, являющийся одновременно интенсивностью потока и представляющий собой среднее число событий, происходящих в единицу времени. Таким образом, t =M[T]=1/λ.
Марковские случайные события описываются обыкновенными дифференциальными уравнениями . Переменными в них служат вероятности состояний р 0 (t), p 1 (t),…,p n (t) .
Для очень больших моментов времени функционирования систем (теоретически при t → ∞) в простейших системах (системы, все потоки в которых – простейшие, а граф – схема гибели и размножения) наблюдается установившийся, или стационарный режим работы. В этом режиме система будет изменять свое состояние, но вероятности этих состояний (финальные вероятности ) р к , к= 1, 2 ,…, n, не зависят от времени и могут рассматриваться как среднее относительное время пребывания системы в соответствующем состоянии.